Linear Classifiers and Perceptrons

CS4780/5780 – Machine Learning Fall 2014

> Thorsten Joachims Cornell University

Reading: Mitchell Chapter 4.4-4.4.2

Example: Spam Filtering

	viagra	learning	the	dating	nigeria	spam?
$\vec{x}_1 = ($	1	0	1	0	0)	$y_1 = -1$
$\vec{x}_2 = ($	0	1	1	0	0)	$y_2 = +1$
$\vec{x}_3 = ($	0	0	0	0	1)	$y_3 = -1$

- Instance Space X:
 - Feature vector of word occurrences => binary features
 - N features (N typically > 50000)
- Target Concept c:
 - Spam (-1) / Ham (+1)

Linear Classification Rules

• Hypotheses of the form

- unbiased:
$$h_{\vec{w}}(\vec{x}) = \begin{cases} +1 & w_1 x_1 + \dots + w_N x_N > 0 \\ -1 & else \end{cases}$$

- biased:
$$h_{\vec{w},b}(\vec{x}) = \begin{cases} +1 & w_1 x_1 + \dots + w_N x_N + b > 0 \\ -1 & else \end{cases}$$

- Parameter vector \vec{w} , scalar b
- Hypothesis space H

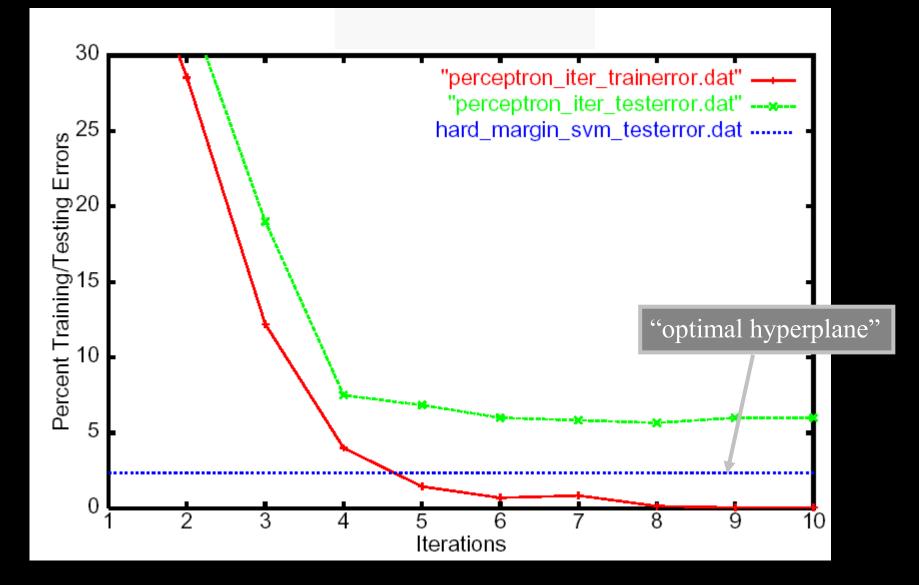
$$- H_{unbiased} = \{ h_{\vec{w}} : \vec{w} \in \Re^N \}$$
$$- H_{biased} = \{ h_{\vec{w},b} : \vec{w} \in \Re^N, b \in \Re \}$$

• Notation

$$-w_{1}x_{1} + \dots + w_{N}x_{N} = \vec{w} \cdot \vec{x} \quad \text{and} \quad sign(a) = \begin{cases} +1 & a > 0 \\ -1 & else \end{cases}$$
$$-h_{\vec{w}}(\vec{x}) = sign(\vec{w} \cdot \vec{x})$$
$$-h_{\vec{w},b}(\vec{x}) = sign(\vec{w} \cdot \vec{x} + b)$$

(Batch) Perceptron Algorithm

Input: $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)), \ \vec{x}_i \in \Re^N, \ y_i \in \{-1, 1\}, \ I \in [1, 2, ..]$


Algorithm:

•
$$\vec{w}_0 = \vec{0}, \ k = 0$$

• repeat

- FOR i=1 TO n* IF $y_i(\vec{w}_k \cdot \vec{x}_i) \leq 0 \# \# \#$ makes mistake $\cdot \vec{w}_{k+1} = \vec{w}_k + y_i \vec{x}_i$ Training Data: $\cdot k = k + 1$ x_1 $x_{\mathcal{I}}$ \boldsymbol{y} * ENDIF $\vec{x_1} = (1 \ 2)$ $y_1 = 1$ $\vec{x_2} = (2 \ 1)$ - ENDFOR $y_2 = 1$ $\vec{x}_3 = (-1 - 1)$ $y_3 = -1$ until I iterations reached 1) $\vec{x}_4 =$ -1 $y_3 = -1$

Example: Reuters Text Classification

