Outline

- Model Selection
 - Controlling overfitting in decision trees
 - Train, validation, test
 - K-fold cross validation
- Evaluation
 - What is the true error of classification rule h?
 - Is rule h_1 more accurate than h_2 ?
 - Is learning algorithm A1 better than A2?

Model Selection and Assessment

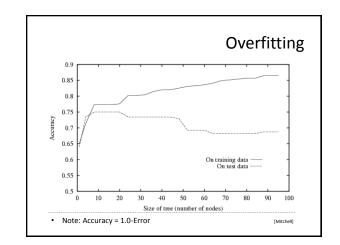
CS4780/5780 – Machine Learning Fall 2014

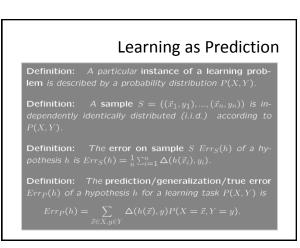
> Thorsten Joachims Cornell University

> > Reading:

Mitchell Chapter 5 Dietterich, T. G., (1998). Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Computation, 10 (7) 1895-1924.

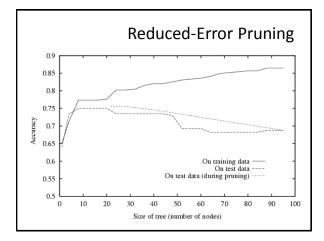
(http://sci2s.ugr.es/keel/pdf/algorithm/articulo/dietterich1998.pdf)

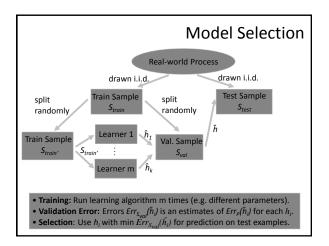


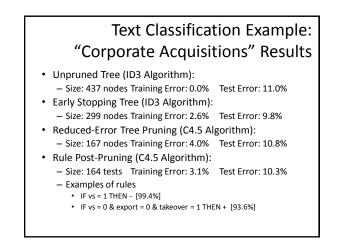


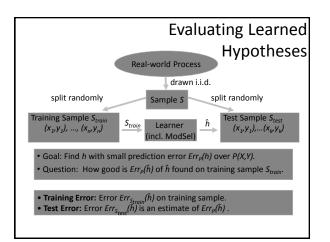
Controlling Overfitting in Decision Trees

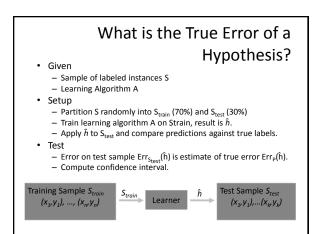
- Early Stopping: Stop growing the tree and introduce leaf when splitting no longer "reliable".
 - Restrict size of tree (e.g., number of nodes, depth)
 - Minimum number of examples in node
 Threshold on splitting criterion
 - Post Pruning: Grow full tree, then simplify.
 - Reduced-error tree pruning
 - Rule post-pruning

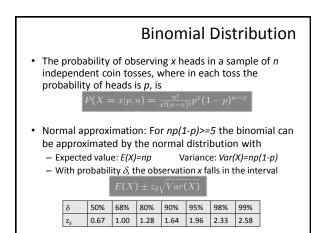


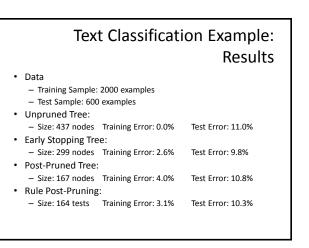












Is Rule h_1 More Accurate than h_2 ? (Same Test Sample)

- Given
 - Sample of labeled instances S
 - Learning Algorithms A₁ and A₂
- Setup
 - Partition S randomly into Strain (70%) and Stest (30%)
 - Train learning algorithms A_1 and A_2 on S_{train} , result are \hat{h}_1 and \hat{h}_2 .
 - Apply \hat{h}_1 and \hat{h}_2 to S_{test} and compute $Err_{S_{test}}(\hat{h}_1)$ and $Err_{S_{test}}(\hat{h}_2)$.
- Test
 - Decide, if $Err_{\rho}(\hat{h}_1) \neq Err_{\rho}(\hat{h}_2)$?
 - Null Hypothesis: $Err_{S_{test}}(\hat{h}_2)$ and $Err_{S_{test}}(\hat{h}_2)$ come from binomial distributions with same p.
 - → Binomial Sign Test (McNemar's Test)

Is Rule h_1 More Accurate than h_2 ? (Different Test Samples)

- Given
 - Samples of labeled instances S₁ and S₂
 - Learning Algorithms A1 and A2
- Setup
 - Partition S₁ randomly into S_{train1} (70%) and S_{test1} (30%)
 - Partition S2 randomly into Strain2 (70%) and Stest2 (30%)
 - Train learning algorithm A₁ on S_{train1} and A₂ on S_{train2}, result are \hat{h}_1 and \hat{h}_2 .
 - Apply \hat{h}_1 to S_{test1} and \hat{h}_2 to S_{test2} and get $Err_{S_{test2}}(\hat{h}_1)$ and $Err_{S_{test2}}(\hat{h}_2)$.
- Test
 - Decide, if $Err_{p}(\hat{h}_{1}) \neq Err_{p}(\hat{h}_{2})$?
 - Null Hypothesis: Err_{stest1}(h₁) and Err_{stest2}(h₂) come from binomial distributions with same p.

 - → t-Test (z-Test) [→ see Mitchell book]

Is Learning Algorithm A_1 better than A_2 ?

- k samples $S_1 \dots S_k$ of labeled instances, all i.i.d. from P(X,Y). - Learning Algorithms A₁ and A₂
- Setup

Given

- For *i* from 1 to k
 - Partition S_i randomly into S_{train} (70%) and S_{test} (30%)
 - Train learning algorithms A_1 and A_2 on S_{train} , result are \hat{h}_1 and \hat{h}_2 .
 - Apply h₁ and h₂ to S_{test} and compute Err_{stest}(h₁) and Err_{stest}(h₂).
- Test
 - Decide, if $E_s(Err_P(A_1(S_{train}))) \neq E_s(Err_P(A_2(S_{train})))$?
 - Null Hypothesis: Err_{stest}(A₁(S_{troin})) and Err_{stest}(A₂(S_{troin})) come from same distribution over samples S.
 - → t-Test (z-Test) or Wilcoxon Signed-Rank Test
 - $[\rightarrow$ see Mitchell book]

Approximation via K-fold Cross Validation

- · Given
 - Sample of labeled instances S Learning Algorithms A₁ and A₂
- Compute
 - Randomly partition S into k equally sized subsets $S_1 \dots S_k$
 - For *i* from 1 to k
 - Train A₁ and A₂ on S₁ ... S_{i-1} S_{i+1} ... S_k and get ĥ₁ and ĥ₂.
 - Apply h₁ and h₂ to S_i and compute Err_s(h₁) and Err_s(h₂).
- Estimate
 - Average $Err_{s_i}(\hat{h}_1)$ is estimate of $E_s(Err_P(A_1(S_{train})))$
 - Average $Err_{S_i}(\hat{h}_2)$ is estimate of $E_S(Err_P(A_2(S_{train})))$
 - Count how often $Err_{s}(\hat{h}_{1}) > Err_{s}(\hat{h}_{2})$ and $Err_{s}(\hat{h}_{1}) < Err_{s}(\hat{h}_{2})$