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Reading:

Mitchell Chapter 5

Dietterich, T. G., (1998). Approximate Statistical Tests for Comparing
Supervised Classification Learning Algorithms. Neural Computation, 10 (7)
1895-1924.
(http://sci2s.ugr.es/keel/pdf/algorithm/articulo/dietterich1998.pdf)

Outline

Model Selection

— Controlling overfitting in decision trees

— Train, validation, test

— K-fold cross validation

Evaluation

— What is the true error of classification rule h?
—Is rule h, more accurate than h,?

— Is learning algorithm A1 better than A2?

Learning as Prediction

Definition: A particular instance of a learning prob-
lem is described by a probability distribution P(X,Y).

Definition: A sample S = 1 yn)) is in-
dependently identically distributed according to
P(X,Y).

Definition: The error on sample S Errg(h) of a hy-
pothesis h is B

Definition: The prediction/generalization/true error
Errp(h) a hypothesis h for a learning task P(X,Y) is

Errp(h) = . A(
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Note: Accuracy = 1.0-Error [Mitchell]

Controlling Overfitting
in Decision Trees

Early Stopping: Stop growing the tree and
introduce leaf when splitting no longer
“reliable”.

— Restrict size of tree (e.g., number of nodes, depth)
— Minimum number of examples in node

— Threshold on splitting criterion

Post Pruning: Grow full tree, then simplify.

— Reduced-error tree pruning

— Rule post-pruning

Accuracy
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Text Classification Example:
“Corporate Acquisitions” Results

Unpruned Tree (ID3 Algorithm):

— Size: 437 nodes Training Error: 0.0%  Test Error: 11.0%
Early Stopping Tree (ID3 Algorithm):

— Size: 299 nodes Training Error: 2.6% Test Error: 9.8%
Reduced-Error Tree Pruning (C4.5 Algorithm):

— Size: 167 nodes Training Error: 4.0%  Test Error: 10.8%
Rule Post-Pruning (C4.5 Algorithm):

— Size: 164 tests Training Error: 3.1% Test Error: 10.3%
— Examples of rules

e IFvs=1THEN - [99.4%]
* IFvs=0& export =0 & takeover = 1 THEN + [93.6%]

Evaluating Learned

- Hypotheses

drawn i.i.d.

split randomly

split randomly

What is the True Error of a
Hypothesis?

* Given
— Sample of labeled instances S
— Learning Algorithm A
* Setup
— Partition S randomly into S, (70%) and S, (30%)
— Train learning algorithm A on Strain, result is h.
— Apply h to S, and compare predictions against true labels.
e Test
— Error on test sample E"Srestﬁ‘) is estimate of true error Err,(h).
— Compute confidence interval.

Binomial Distribution

* The probability of observing x heads in a sample of n
independent coin tosses, where in each toss the
probability of heads is p, is

P(X = z|p,n) = " (1 — p)"*

¢ Normal approximation: For np(1-p)>=5 the binomial can
be approximated by the normal distribution with
— Expected value: E(X)=np Variance: Var(X)=np(1-p)
— With probability &, the observation x falls in the interval
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Text Classification Example:
Results

Data

— Training Sample: 2000 examples

— Test Sample: 600 examples

Unpruned Tree:

— Size: 437 nodes  Training Error: 0.0% Test Error: 11.0%
Early Stopping Tree:

— Size: 299 nodes Training Error: 2.6% Test Error: 9.8%
Post-Pruned Tree:

— Size: 167 nodes Training Error: 4.0% Test Error: 10.8%
Rule Post-Pruning:

— Size: 164 tests  Training Error: 3.1% Test Error: 10.3%




Is Rule h, More Accurate than h,?
(Same Test Sample)

e Given
— Sample of labeled instances S
— Learning Algorithms A; and A,

¢ Setup
— Partition S randomly into S,,,;, (70%) and S,,,; (30%)
— Train learning algorithms A; and A, on S,,,;,, result are h, and h,.
— Apply h;and A, to S, and compute Errstest(ﬁl) and E”stmﬁ’z)»

¢ Test
— Decide, if Errp(h,) # Erry(h,)?

— Null Hypothesis: Errsml(ﬁl) and E”sms,(i’z) come from binomial
distributions with same p.

-> Binomial Sign Test (McNemar’s Test)

Is Rule h; More Accurate than h,?
(Different Test Samples)

Given
— Samples of labeled instances S, and S,
— Learning Algorithms A; and A,
Setup
— Partition S; randomly into S,,;,; (70%) and S, (30%)
Partition S, randomly into S,,;,, (70%) and S, (30%)
— Train learning algorithm A; on S,,;,; and A,on S,,.,, result
are h; and h,.
— Apply fi; 10 Speye; and fi, 0 Seeyy, and get Errs (hy) and Errs_ (hy) .
Test
— Decide, if Errp(h;) # Erro(h,)?

— Null Hypothesis: Errsmuﬁu) and E”smmﬁ’z} come from binomial
distributions with same p.

- t-Test (z-Test) [ see Mitchell book]

Is Learning Algorithm
A, better than A,?

— ksamples S; ... S, of labeled instances, all i.i.d. from P(XY).
— Learning Algorithms A, and A,
Setup
— Forifrom1tok
* Partition S; randomly into S,,,;, (70%) and S, (30%)
* Train learning algorithms A; and A, on S,.,,,, result are h; and h,.
* Apply h; and A, to S, and compute Errg_ (h;) and Errg, (h,).
Test

— Decide, if Eg(Errp(A;(Strain))) # ES(Errp(Ax(Sirain)))?
— Null Hypothesis: Errg _(A;(Sqin)) and Errs, (Ay(Sirain)) cOme
from same distribution over samples S.
> t-Test (z-Test) or Wilcoxon Signed-Rank Test
[ see Mitchell book]

Given

Approximation via
. K-fold Cross Validation

— Sample of labeled instances S
— Learning Algorithms A; and A,
Compute
— Randomly partition S into k equally sized subsets S; ... S,
— Forifrom1tok
* Train A;and A,on'S; ... S, Si,; . Sc and get A, and h,.
« Apply b, and h, to S;and compute Errsrﬁll) and Errsﬂz).
Estimate
— Average Errsl_{ﬁl) is estimate of Eg(Errp(A (S ain)))
— Average Errsl_{ﬁz) is estimate of Eg(Errp(A(S,qin)))
— Count how often Errg(h,)>Errg(h,) and Errg(h)<Errs(h,)




