Model Selection and Assessment

CS4780/5780 – Machine Learning Fall 2014

> Thorsten Joachims Cornell University

Reading: Mitchell Chapter 5 Dietterich, T. G., (1998). Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Computation, 10 (7) 1895-1924. (http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.3325)

Outline

- Model Selection
 - Controlling overfitting in decision trees
 - Train, validation, test
 - K-fold cross validation
- Evaluation
 - What is the true error of classification rule h?
 - Is rule h_1 more accurate than h_2 ?
 - Is learning algorithm A1 better than A2?

Learning as Prediction

Definition: A particular instance of a learning problem is described by a probability distribution P(X, Y).

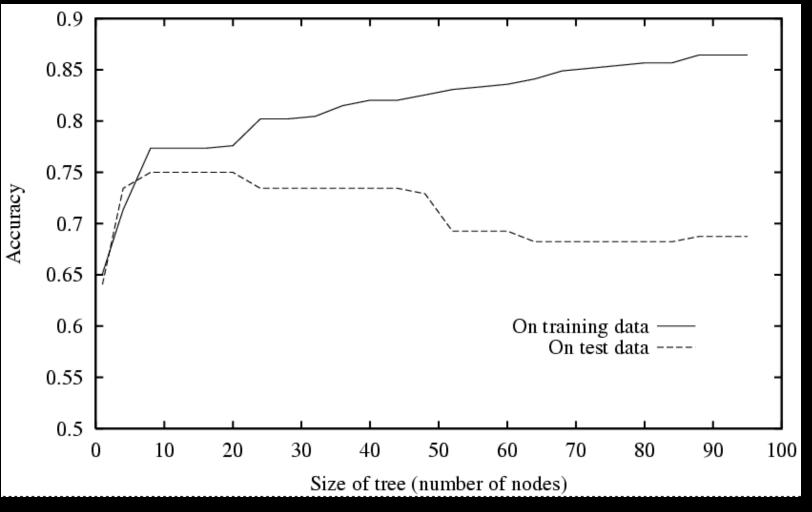
Definition: A sample $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n))$ is independently identically distributed (i.i.d.) according to P(X, Y).

Definition: The error on sample $S \ Err_S(h)$ of a hypothesis h is $Err_S(h) = \frac{1}{n} \sum_{i=1}^{n} \Delta(h(\vec{x}_i), y_i)$.

Definition: The prediction/generalization/true error $Err_P(h)$ of a hypothesis h for a learning task P(X,Y) is

$$Err_P(h) = \sum_{\vec{x} \in X, y \in Y} \Delta(h(\vec{x}), y) P(X = \vec{x}, Y = y).$$

Overfitting



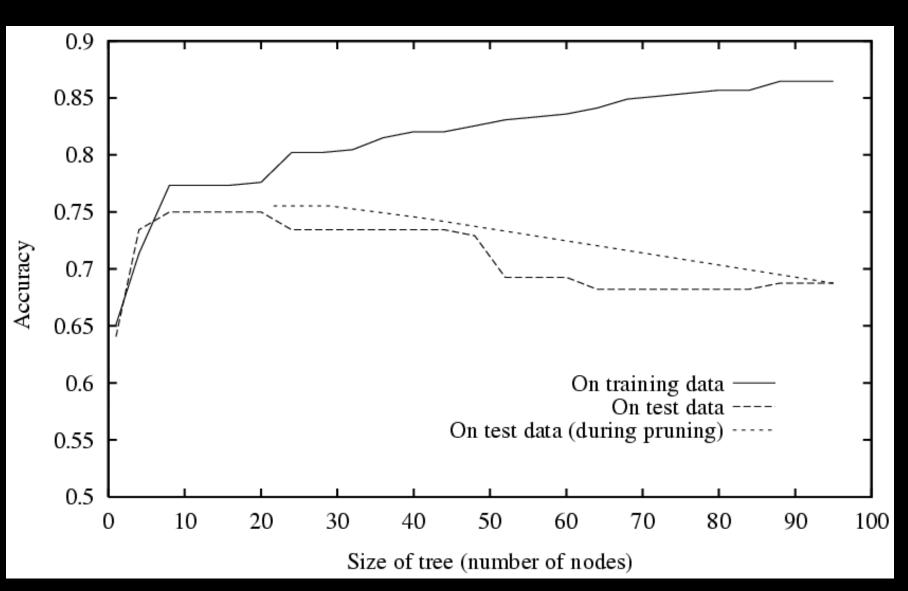
• Note: Accuracy = 1.0-Error

[Mitchell]

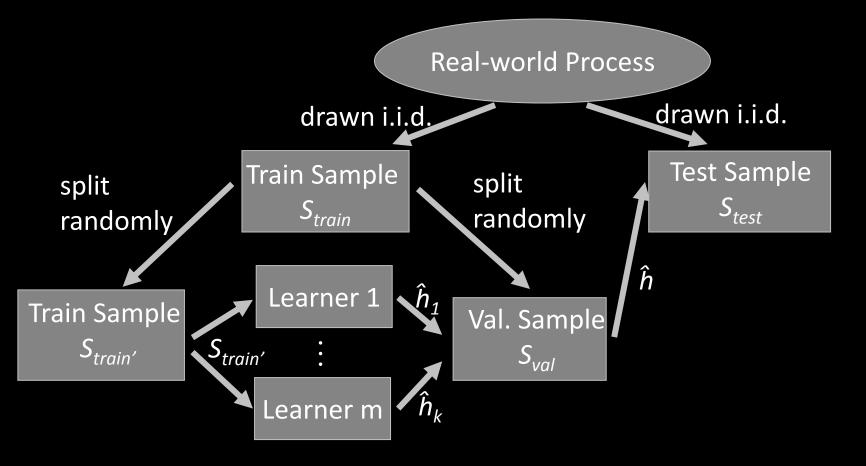
Controlling Overfitting in Decision Trees

- Early Stopping: Stop growing the tree and introduce leaf when splitting no longer "reliable".
 - Restrict size of tree (e.g., number of nodes, depth)
 - Minimum number of examples in node
 - Threshold on splitting criterion
- Post Pruning: Grow full tree, then simplify.
 - Reduced-error tree pruning
 - Rule post-pruning

Reduced-Error Pruning



Model Selection



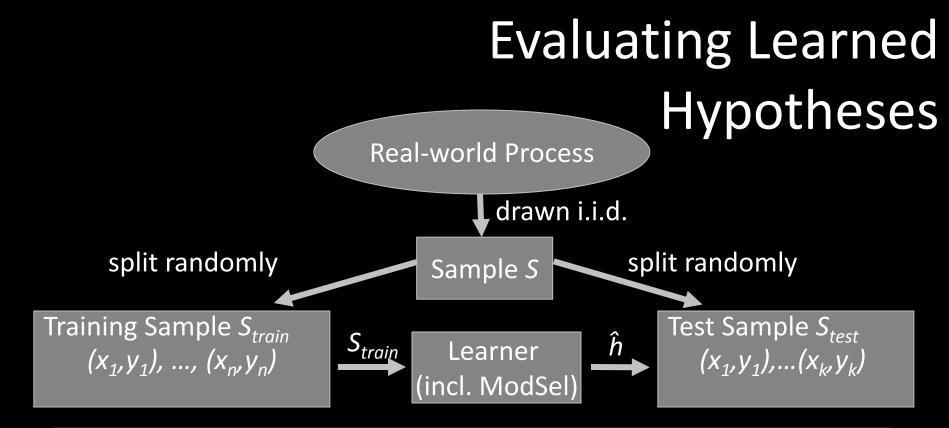
Training: Run learning algorithm m times (e.g. different parameters).
Validation Error: Errors Err_{Sval}(ĥ_i) is an estimates of Err_p(ĥ_i) for each h_i.
Selection: Use h_i with min Err_{Sval}(ĥ_i) for prediction on test examples.

K-fold Cross Validation

- Given
 - Sample of labeled instances S
 - Learning Algorithms A
- Compute
 - Randomly partition S into k equally sized subsets S₁ ... S_k
 - For *i* from 1 to k
 - Train A on $S_1 \dots S_{i-1} S_{i+1} \dots S_k$ and get \hat{h} .
 - Apply \hat{h} to S_i and compute $Err_{S_i}(\hat{h})$.
- Estimate
 - Average $Err_{S_i}(\hat{h})$ is estimate of average prediction error of rules produced by A, namely $E_s(Err_P(A(S_{train})))$

Text Classification Example: "Corporate Acquisitions" Results

- Unpruned Tree (ID3 Algorithm):
 - Size: 437 nodes Training Error: 0.0% Test Error: 11.0%
- Early Stopping Tree (ID3 Algorithm):
 - Size: 299 nodes Training Error: 2.6% Test Error: 9.8%
- Reduced-Error Tree Pruning (C4.5 Algorithm):
 - Size: 167 nodes Training Error: 4.0% Test Error: 10.8%
- Rule Post-Pruning (C4.5 Algorithm):
 - Size: 164 tests Training Error: 3.1% Test Error: 10.3%
 - Examples of rules
 - IF vs = 1 THEN [99.4%]
 - IF vs = 0 & export = 0 & takeover = 1 THEN + [93.6%]



• Goal: Find *h* with small prediction error *Err_P(h)* over *P(X,Y)*.

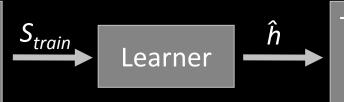
• Question: How good is $Err_{P}(\hat{h})$ of \hat{h} found on training sample S_{train} .

• **Training Error:** Error $Err_{S_{train}}(\hat{h})$ on training sample. • **Test Error:** Error $Err_{S_{test}}(\hat{h})$ is an estimate of $Err_{P}(\hat{h})$.

What is the True Error of a Hypothesis?

- Given
 - Sample of labeled instances S
 - Learning Algorithm A
- Setup
 - Partition S randomly into $\rm S_{train}$ (70%) and $\rm S_{test}$ (30%)
 - Train learning algorithm A on Strain, result is \hat{h} .
 - Apply \hat{h} to S_{test} and compare predictions against true labels.
- Test
 - Error on test sample $Err_{S_{test}}(\hat{h})$ is estimate of true error $Err_{P}(\hat{h})$.
 - Compute confidence interval.

Training Sample S_{train} $(x_1, y_1), ..., (x_n, y_n)$



Test Sample S_{test} $(x_1, y_1), \dots (x_k, y_k)$

Binomial Distribution

 The probability of observing x heads in a sample of n independent coin tosses, where in each toss the probability of heads is p, is

$$P(X = x | p, n) = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}$$

- Normal approximation: For np(1-p)>=5 the binomial can be approximated by the normal distribution with
 - Expected value: E(X)=np Variance: Var(X)=np(1-p)
 - With probability δ , the observation x falls in the interval

$E(X) \pm z_{\delta} \sqrt{Var(X)}$

δ	50%	68%	80%	90%	95%	98%	99%
\mathbf{z}_{δ}	0.67	1.00	1.28	1.64	1.96	2.33	2.58

Text Classification Example: Results

• Data

- Training Sample: 2000 examples
- Test Sample: 600 examples
- Unpruned Tree:
 - Size: 437 nodes Training Error: 0.0% Te
 - Test Error: 11.0%

Test Error: 9.8%

Test Error: 10.8%

- Early Stopping Tree:
 - Size: 299 nodes Training Error: 2.6%
- Post-Pruned Tree:
 - Size: 167 nodes Training Error: 4.0%
- Rule Post-Pruning:
 - Size: 164 tests Training Error: 3.1% Test Error: 10.3%

Is Rule h₁ More Accurate than h₂? (Same Test Sample)

- Given
 - Sample of labeled instances S
 - Learning Algorithms A_1 and A_2
- Setup
 - Partition S randomly into S_{train} (70%) and S_{test} (30%)
 - Train learning algorithms A_1 and A_2 on S_{train} , result are \hat{h}_1 and \hat{h}_2 .
 - Apply \hat{h}_1 and \hat{h}_2 to S_{test} and compute $Err_{S_{test}}(\hat{h}_1)$ and $Err_{S_{test}}(\hat{h}_2)$.
- Test
 - Decide, if $Err_P(\hat{h}_1) \neq Err_P(\hat{h}_2)$?
 - Null Hypothesis: $Err_{S_{test}}(\hat{h}_1)$ and $Err_{S_{test}}(\hat{h}_2)$ come from binomial distributions with same p.
 - → Binomial Sign Test (McNemar's Test)

Is Rule h₁ More Accurate than h₂? (Different Test Samples)

- Given
 - Samples of labeled instances S_1 and S_2
 - Learning Algorithms A_1 and A_2
- Setup
 - Partition S_1 randomly into S_{train1} (70%) and S_{test1} (30%) Partition S_2 randomly into S_{train2} (70%) and S_{test2} (30%)
 - Train learning algorithm A_1 on S_{train1} and A_2 on S_{train2} , result are \hat{h}_1 and \hat{h}_2 .
 - Apply \hat{h}_1 to S_{test1} and \hat{h}_2 to S_{test2} and get $Err_{S_{test1}}(\hat{h}_1)$ and $Err_{S_{test2}}(\hat{h}_2)$.
- Test
 - Decide, if $Err_P(\hat{h}_1) \neq Err_P(\hat{h}_2)$?
 - Null Hypothesis: $Err_{S_{test1}}(\hat{h}_1)$ and $Err_{S_{test2}}(\hat{h}_2)$ come from binomial distributions with same p.

 \rightarrow t-Test (z-Test) [\rightarrow see Mitchell book]

Is Learning Algorithm A_1 better than A_2 ?

- Given
 - k samples $S_1 \dots S_k$ of labeled instances, all i.i.d. from P(X,Y).
 - Learning Algorithms A₁ and A₂
- Setup
 - For *i* from 1 to *k*
 - Partition S_i randomly into S_{train} (70%) and S_{test} (30%)
 - Train learning algorithms A_1 and A_2 on S_{train} , result are \hat{h}_1 and \hat{h}_2 .
 - Apply \hat{h}_1 and \hat{h}_2 to S_{test} and compute $Err_{S_{test}}(\hat{h}_1)$ and $Err_{S_{test}}(\hat{h}_2)$.
- Test
 - Decide, if $E_s(Err_P(A_1(S_{train}))) \neq E_s(Err_P(A_2(S_{train})))$?
 - Null Hypothesis: $Err_{S_{test}}(A_1(S_{train}))$ and $Err_{S_{test}}(A_2(S_{train}))$ come from same distribution over samples S.
 - → t-Test (z-Test) or Wilcoxon Signed-Rank Test [→ see Mitchell book]

Approximation via K-fold Cross Validation

- Given
 - Sample of labeled instances S
 - Learning Algorithms A₁ and A₂
- Compute
 - Randomly partition S into k equally sized subsets $S_1 \dots S_k$
 - For *i* from 1 to k
 - Train A_1 and A_2 on $S_1 \dots S_{i-1} S_{i+1} \dots S_k$ and get \hat{h}_1 and \hat{h}_2 .
 - Apply \hat{h}_1 and \hat{h}_2 to S_i and compute $Err_{S_i}(\hat{h}_1)$ and $Err_{S_i}(\hat{h}_2)$.
- Estimate
 - Average $Err_{S_i}(\hat{h}_1)$ is estimate of $E_S(Err_P(A_1(S_{train})))$
 - Average $Err_{S_i}(\hat{h}_2)$ is estimate of $E_S(Err_P(A_2(S_{train})))$
 - Count how often $Err_{S_i}(\hat{h}_1) > Err_{S_i}(\hat{h}_2)$ and $Err_{S_i}(\hat{h}_1) < Err_{S_i}(\hat{h}_2)$