
Recommendation
Systems

Machine Learning

CS 4780/5780 - Fall 2012  
Cornell University  

Department of Computer Science

!1

Centro de Inteligencia Artificial.

Universidad de Oviedo at Gijón. Spain

Spanish Association for Artificial Intelligence

From 9/2012 till 7/2013

Visiting Professor in Cornell University

Antonio Bahamonde

!2

Recommendation Systems

Contents

• Definitions

• Netflix Prize

• Similarity based methods

• Matrix factorization

• References

!3

Recommendation Systems

RS: Definitions

RS help to match users with items

• Ease information overload

• Sales assistance (guidance, advisory, persuasion,...)

RS are software agents that elicit the interests and preferences of
individual consumers [...] and make recommendations accordingly.

Different system designs / paradigms

• Based on availability of exploitable data

• Implicit and explicit user feedback

• Domain characteristics

!4

Recommendation Systems

Purpose and success criteria

Retrieval perspective

•Reduce search costs

•Provide "correct"
proposals –
 Users know
in advance what they want

Recommendation
perspective

•Serendipity– identify items
from the Long Tail –Users
did not know about
existence

!5

- 8 -
© Dietmar Jannach, Markus Zanker and Gerhard Friedrich

When�does�a�RS�do�its�job�well?

� "Recommend�widely�
unknown�items�that�
users�might�actually�
like!"

� 20%�of�items�
accumulate�74%�of�all�
positive�ratings

� Items�rated�>�3�in�
MovieLens�100K�
dataset

Recommend�items�
from�the�long�tail

Recommendation Systems

Purpose and success criteria

Prediction perspective

• Predict to what degree users like an item

• Most popular evaluation scenario in research

Interaction perspective

• Give users a "good feeling" –
 Educate users about the product
domain

• Convince/persuade users ‐ explain

Finally, commercial perspective

• Increase "hit", "clickthrough", "lookers to bookers" rates

• Optimize sales margins and profit

!6

Recommendation Systems

Popular RS

• Google

• Genius (Apple)

• last.fm

• Amazon

• Netflix

• TiVo

!7

Recommendation Systems

Popular RS: Waze

• G

Now in the first line of actuality since Apple suggested
its use instead of the failed new maps in iOS6.

!8

Recommendation Systems

Popular RS
(in everyday life)

• Bestseller lists

• Top 40 music lists

• The “recent returns” shelf at the library

• Unmarked but well-used paths thru the

woods

• Most popular lists in newspapers

• Many weblogs

• “Read any good books lately?”

!9

Recommendation Systems

Collaborative Filtering

The most prominent approach to RS

• used by large, commercial e‐commerce sites

• well‐understood, various algorithms and variations exist

• applicable in many domains (book, movies, DVDs, ..)

Approach

• use the "wisdom of the crowd" to recommend items 
(crowdsourcing)

Basic assumption and idea

• users give ratings to catalog items (implicitly or explicitly)

• customers who had similar tastes in the past, will have similar

tastes in the future

!10

Recommendation Systems

Collaborative Filtering

• Relate two fundamentally different entities: users
and items

explicit feedback (ratings)

implicit (purchase or browsing history, search patterns, ...)

sometimes items descriptions by feature (content based)

• Approaches:

neighborhood

latent factor

!11

Recommendation Systems

Naïve Neighborhood approach

• item-item

• user-user

item1 item2 item3 item4 item5

alice 5 3 4 4 ?

user1 3 1 2 3 3

user2 4 3 4 3 5

user3 3 3 1 5 4

user4 1 5 5 2 1

!12

Compute similarity and then prediction

Recommendation Systems

Naïve Neighborhood approach

• user-user

item1 item2 item3 item4 item5

alice 5 3 4 4 ?

user1 3 1 2 3 3

user2 4 3 4 3 5

user3 3 3 1 5 4

user4 1 5 5 2 1

!13

Recommendation Systems

Naïve Neighborhood approach

• item-item

item1 item2 item3 item4 item5

alice 5 3 4 4 ?

user1 3 1 2 3 3

user2 4 3 4 3 5

user3 3 3 1 5 4

user4 1 5 5 2 1

!14

Recommendation Systems

Naïve Neighborhood approach

• How to measure similarities?

• correlation

• cosine

similar formula for item-item

!15

cos(a, b) =
a, b

‖a‖‖b‖

ρ(a, b)

bpu, iq “ Ğrpu, ¨q `
ř

u1‰u simpu, u1qprpu1, iq ´ Ğrpu1, ¨qq
ř

u1‰u simpu, u1q

Recommendation Systems

Naïve Neighborhood approach

user-user using 2 neighbors

!16

item1 item2 item3 item4 item5

4,00 alice 5 3 4 4 ?

2,25 0,853 user1 3 1 2 3 3

3,50 0,707 user2 4 3 4 3 5

3,00 0 user3 3 3 1 5 4

3,25 -0,792 user4 1 5 5 2 1

Ğrpu, ¨qρpalice, uq

bpalice, item5q “ 4 ` p3 ´ 2.25q ˚ 0.853 ` p5 ´ 3.5q ˚ 0.707

0.853 ` 0.707
“ 5.09

Recommendation Systems

Naïve Neighborhood approach

item-item  
using 2 neighbors

!17

item1 item2 item3 item4 item5

alice 5 3 4 4 ?

user1 3 1 2 3 3

user2 4 3 4 3 5

user3 3 3 1 5 4

user4 1 5 5 2 1

0,969 -0,478 -0,428 0,582

3,2 3,0 3,2 3,4 3,25Ęrp¨, iq
ρpitem5, iq

bpalice, item5q “ 3.25 ` p5 ´ 3.2q ˚ 0.969 ` p4 ´ 3.4q ˚ 0.582

0.969 ` 0.582
“ 4.6

Recommendation Systems

Naïve Neighborhood approach

• Scalability

• user-user is a memory based method

• millions of users

• does not scale for most real-world
scenarios

!18

Recommendation Systems

Naïve Neighborhood approach

• item-item

• is model based

• models learned offline are stored for
predictions at run-time

• allows explanations

• no cold start problem

!19

Recommendation Systems

Naïve Neighborhood approach

• However in all cases

• not all neighbors should be taken into
account (similarity thresholds)

• not all item are rated (co-rated)

• not involved the loss function

!20

Recommendation Systems

Netflix Prize

 (Sep, 21, 2009):

 Netflix Awards $1 Million Prize and Starts a New Contest

[...]try to predict what movies particular customers would prefer

 “Accurately predicting the movies Netflix members will love is a
key component of our service,” said Neil Hunt, chief product

officer (Netflix)

!21

Recommendation Systems

Netflix Prize

The Netflix dataset

more than 100 million movie ratings (1-5 stars)

Nov 11, 1999 and Dec 31, 2005

about 480, 189 users and n = 17, 770 movies

99% of possible rating are missing

movie average 5600 ratings

user rates average 208 movies

training and quiz (test-prize) data

!22

Recommendation Systems

Netflix Prize

The loss function: root mean squared error (RMSE)

Netflix had its own system, Cinematch, which achieved
0.9514.

The prize was awarded to a system that reach RMSE
below 0.8563 (10% improvement)

!23

RMSE “
d

1

|Quiz|
ÿ

pu,iqPQuiz

prpu, iq ´ bpu, iqq2

Recommendation Systems

Netflix Prize

• Leaderboard

See

!24

Team RMSE Date Hour

1 BellKor's Pragmatic Chaos 0,8567 26/07/09 18:18:28

2 The Emsemble 0,8567 26/07/09 18:38:22

3 Grand Prize Team 0,8582 10/07/09 21:24:40

4 Opera Solutions and
Vandelay United 0,8588 10/07/09 01:12:31

Recommendation Systems

Netfilx prize winners

Yehuda Koren, Robert M. Bell: Advances in Collaborative
Filtering. Recommender Systems Handbook 2011: 145-186

Yehuda Koren, Yahoo! Research

Robert Bell, AT&T Labs – Research

Discuss similarity and matrix factorization approaches

!25

Recommendation Systems

Similarity approach revisited

3 major components:

• data normalization

• neighbor selection

• determination of interpolation weights

!26

Recommendation Systems

Baseline approach

Example: Titanic and Joe

• Average in Netflix: 3.7

• Joe critical: 0.3 less than average

• Titanic: 0.5 more than average (all users)

b(Joe,Titanic) = 3.7 - 0.3 + 0.5 = 3.9

!27

bpu, iq “ µ ` Ğbpu, ¨q ` Ębp¨, iq
bu,i “ µ ` bu ` bi

Recommendation Systems

Baseline approach

The equations sound appealing, but Koren and Bell
propose to learn it using a least square approach:

where

and the last term is a regularization term to avoid
overfitting

!28

4 Yehuda Koren and Robert Bell

Netflix data 99% of the possible ratings are missing because a user typically rates
only a small portion of the movies. The (u, i) pairs for which rui is known are stored
in the set K = {(u, i) | rui is known}. Each user u is associated with a set of items
denoted by R(u), which contains all the items for which ratings by u are available.
Likewise, R(i) denotes the set of users who rated item i. Sometimes, we also use
a set denoted by N(u), which contains all items for which u provided an implicit
preference (items that he rented/purchased/watched, etc.).
Models for the rating data are learnt by fitting the previously observed ratings.

However, our goal is to generalize those in a way that allows us to predict future,
unknown ratings. Thus, caution should be exercised to avoid overfitting the observed
data. We achieve this by regularizing the learnt parameters, whose magnitudes are
penalized. Regularization is controlled by constants which are denoted as: λ1,λ2, . . .
Exact values of these constants are determined by cross validation. As they grow,
regularization becomes heavier.

2.1 Baseline predictors

CF models try to capture the interactions between users and items that produce
the different rating values. However, much of the observed rating values are due to
effects associated with either users or items, independently of their interaction. A
principal example is that typical CF data exhibit large user and item biases – i.e.,
systematic tendencies for some users to give higher ratings than others, and for some
items to receive higher ratings than others.
We will encapsulate those effects, which do not involve user-item interaction,

within the baseline predictors (also known as biases). Because these predictors tend
to capture much of the observed signal, it is vital to model them accurately. Such
modeling enables isolating the part of the signal that truly represents user-item in-
teraction, and subjecting it to more appropriate user preference models.
Denote by µ the overall average rating. A baseline prediction for an unknown

rating rui is denoted by bui and accounts for the user and item effects:

bui = µ+bu+bi (1)

The parameters bu and bi indicate the observed deviations of user u and item i, re-
spectively, from the average. For example, suppose that we want a baseline predictor
for the rating of the movie Titanic by user Joe. Now, say that the average rating over
all movies, µ , is 3.7 stars. Furthermore, Titanic is better than an average movie, so
it tends to be rated 0.5 stars above the average. On the other hand, Joe is a critical
user, who tends to rate 0.3 stars lower than the average. Thus, the baseline predictor
for Titanic’s rating by Joe would be 3.9 stars by calculating 3.7−0.3+0.5. In order
to estimate bu and bi one can solve the least squares problem

min
b∗

∑
(u,i)∈K

(rui−µ−bu−bi)2+λ1(∑
u
b2u+∑

i
b2i) .

4 Yehuda Koren and Robert Bell

Netflix data 99% of the possible ratings are missing because a user typically rates
only a small portion of the movies. The (u, i) pairs for which rui is known are stored
in the set K = {(u, i) | rui is known}. Each user u is associated with a set of items
denoted by R(u), which contains all the items for which ratings by u are available.
Likewise, R(i) denotes the set of users who rated item i. Sometimes, we also use
a set denoted by N(u), which contains all items for which u provided an implicit
preference (items that he rented/purchased/watched, etc.).
Models for the rating data are learnt by fitting the previously observed ratings.

However, our goal is to generalize those in a way that allows us to predict future,
unknown ratings. Thus, caution should be exercised to avoid overfitting the observed
data. We achieve this by regularizing the learnt parameters, whose magnitudes are
penalized. Regularization is controlled by constants which are denoted as: λ1,λ2, . . .
Exact values of these constants are determined by cross validation. As they grow,
regularization becomes heavier.

2.1 Baseline predictors

CF models try to capture the interactions between users and items that produce
the different rating values. However, much of the observed rating values are due to
effects associated with either users or items, independently of their interaction. A
principal example is that typical CF data exhibit large user and item biases – i.e.,
systematic tendencies for some users to give higher ratings than others, and for some
items to receive higher ratings than others.
We will encapsulate those effects, which do not involve user-item interaction,

within the baseline predictors (also known as biases). Because these predictors tend
to capture much of the observed signal, it is vital to model them accurately. Such
modeling enables isolating the part of the signal that truly represents user-item in-
teraction, and subjecting it to more appropriate user preference models.
Denote by µ the overall average rating. A baseline prediction for an unknown

rating rui is denoted by bui and accounts for the user and item effects:

bui = µ+bu+bi (1)

The parameters bu and bi indicate the observed deviations of user u and item i, re-
spectively, from the average. For example, suppose that we want a baseline predictor
for the rating of the movie Titanic by user Joe. Now, say that the average rating over
all movies, µ , is 3.7 stars. Furthermore, Titanic is better than an average movie, so
it tends to be rated 0.5 stars above the average. On the other hand, Joe is a critical
user, who tends to rate 0.3 stars lower than the average. Thus, the baseline predictor
for Titanic’s rating by Joe would be 3.9 stars by calculating 3.7−0.3+0.5. In order
to estimate bu and bi one can solve the least squares problem

min
b∗

∑
(u,i)∈K

(rui−µ−bu−bi)2+λ1(∑
u
b2u+∑

i
b2i) .

Recommendation Systems

Baseline approach

In the Netflix data

The average rating (µ) = 3.6
Learned bias

user (bu) has average 0.044
their absolute value (|bu|) is 0.32

item (movie) (bi) has average -0.26 (s.d. 0.48),
(|bi|) is 0.43

!29

baseline Cinematch Prize

RMSE 0,9799 0,9514 0,8567

Recommendation Systems

Improvements

• Koren & Bell report significant improvements
adding

• temporal dynamics (temporal drift of
preferences)

• implicit feedback (movie rental history (not
available; rated movies!),

!30

baseline + temporal +tem (spline) Cinematch Prize

RMSE 0,9799 0,9771 0,9603 0,9514 0,8567

Recommendation Systems

Matrix factorization

• Tries to capture users and items relationships

• Based on well-known algebraic decomposition of
matrices used before in Information Retrieval (LSI)

• Intended idea: consider latent variables

• As implemented by Koren and Bell, this approach
won the Netflix Prize

!31

Recommendation Systems

Matrix factorization

• Transform both items and users into a feature space
of lower dimensionality (k), the latent space

• Tries to explain ratings by characterizing both items
and users on factors automatically learned from data.

• Factors might measure aspects as comedy, drama,
amount of action, ...

• Efficient implementation offline

• Admit improvements in temporal drift and implicit
feedback

!32

Recommendation Systems

Matrix factorization (SVD)

SVD (singular value decomposition). Matrix M with rows
users and columns items

M = U*S*(Items)T

where
UTU = (Items)T(Items) = I

and then

!33

√
S = diag(

√
s1, . . . ,

√
sn)

S = diag(s1, . . . , sn), s1 ≥ s2, . . . sn−1 ≥ sn ≥ 0

M = (U ∗
√
S) ∗ (

√
S ∗ ItemsT)

Recommendation Systems

Matrix factorization (SVD)

If we use only k dimensions

M ≅ Mk = Uk*Sk*(Itemsk)T

This is a matrix of rank k. The most similar to M with this rank.

!34

k

#Users

k

#Items

(Itemsk)T

UkMk =

Sk

Mk = (Uk ∗
√

Sk) ∗ (
√

Sk ∗ ItemsTk)

Recommendation Systems

Matrix factorization

!35

8 Yehuda Koren and Robert Bell

is created by also adding in the aforementioned baseline predictors that depend only
on the user or item. Thus, a rating is predicted by the rule

r̂ui = µ+bi+bu+qTi pu . (2)

In order to learn the model parameters (bu,bi, pu and qi) we minimize the regu-
larized squared error

min
b∗,q∗,p∗

∑
(u,i)∈K

(rui−µ−bi−bu−qTi pu)2+λ4(b2i +b2u+‖qi‖2+‖pu‖2) .

The constant λ4, which controls the extent of regularization, is usually determined
by cross validation. Minimization is typically performed by either stochastic gradi-
ent descent or alternating least squares.
Alternating least squares techniques rotate between fixing the pu’s to solve for the

qi’s and fixing the qi’s to solve for the pu’s. Notice that when one of these is taken as
a constant, the optimization problem is quadratic and can be optimally solved; see
[2, 4].
An easy stochastic gradient descent optimization was popularized by Funk [10]

and successfully practiced by many others [17, 23, 24, 28]. The algorithm loops
through all ratings in the training data. For each given rating rui, a prediction (r̂ui)
is made, and the associated prediction error eui

def
= rui− r̂ui is computed. For a given

training case rui, we modify the parameters by moving in the opposite direction of
the gradient, yielding:

• bu ← bu+ γ · (eui−λ4 ·bu)
• bi ← bi+ γ · (eui−λ4 ·bi)
• qi ← qi+ γ · (eui · pu−λ4 ·qi)
• pu ← pu+ γ · (eui ·qi−λ4 · pu)

When evaluating the method on the Netflix data, we used the following values for
the meta parameters: γ = 0.005,λ4 = 0.02. Henceforth, we dub this method “SVD”.
A general remark is in place. One can expect better accuracy by dedicating sepa-

rate learning rates (γ) and regularization (λ) to each type of learned parameter. Thus,
for example, it is advised to employ distinct learning rates to user biases, item biases
and the factors themselves. A good, intensive use of such a strategy is described in
Takács et al. [29]. When producing exemplary results for this chapter, we did not
use such a strategy consistently, and in particular many of the given constants are
not fully tuned.

3.2 SVD++

Prediction accuracy is improved by considering also implicit feedback, which pro-
vides an additional indication of user preferences. This is especially helpful for those

Algorithm
Let M = rui - (µ) - bu - bi; %fill missing values with 0
[U S Items] = svd(M); % fix k <= rank(M);
U_rep = Uk *sqrt(Sk); % call pu row u-th of U_rep

Items_rep = Itemsk * sqrt(Sk); %call qi row i-th of Items_rep

Mk = (Uk ∗
√

Sk) ∗ (
√

Sk ∗ ItemsTk)

Recommendation Systems

Matrix factorization

In this case M

!36

item1 item2 item3 item4 item5

alice 5 3 4 4 ?

user1 3 1 2 3 3

user2 4 3 4 3 5

user3 3 3 1 5 4

user4 1 5 5 2 1

bu

0,80

-0,80

0,60

0,00

-0,40

bi 0,00 -0,20 0,00 0,20 0,00 µ 3,20

Recommendation Systems

Matrix factorization

M = rui - (µ) - bu - bi; %fill missing values with 0

!37

item1 item2 item3 item4 item5

alice 1,0 -0,8 0,0 -0,2 0,0

user1 0,6 -1,2 -0,4 0,4 0,6

user2 0,2 -0,6 0,2 -1,0 1,2

user3 -0,2 0,0 -2,2 1,6 0,8

user4 -1,8 2,4 2,2 -1,0 -1,8

Recommendation Systems

Matrix factorization

M [U S Items] = svd(M);

!38

-0,143 0,348 0,445 -0,500 0,640

-0,290 0,185 0,148 0,842 0,389

-0,097 0,478 -0,838 -0,096 0,226

-0,406 -0,762 -0,263 -0,118 0,414

0,849 -0,188 -0,096 0,136 0,465

U =

4,971 0,000 0,000 0,000 0,000

0,000 2,591 0,000 0,000 0,000

0,000 0,000 1,258 0,000 0,000

0,000 0,000 0,000 0,440 0,000

0,000 0,000 0,000 0,000 0,000

S =

Recommendation Systems

Matrix factorization

[U S Items] = svd(M);

!39

-0,359 0,403 0,471 -0,536 -0,447

0,515 -0,478 -0,208 -0,513 -0,447

0,575 0,496 0,111 0,459 -0,447

-0,300 -0,581 0,385 0,474 -0,447

-0,431 0,159 -0,758 0,116 -0,447

Items =

Recommendation Systems

Matrix factorization

For k = 2

!40

-0,359 0,403

0,515 -0,478

0,575 0,496

-0,300 -0,581

-0,431 0,159

Itemsk =
-0,143 0,348

-0,290 0,185

-0,097 0,478

-0,406 -0,762

0,849 -0,188

Uk =
4,971 0,000

0,000 2,591

0,000 0,000

Sk =

Recommendation Systems

Matrix factorization

k=2

!41

−1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

Alice

U1

U2

U3

U4

It1

It5

It3

It2
It4

Recommendation Systems

Matrix factorization

For k = 2;
M2 = U2*S2*(Items2)'
prediction2 = (µ) - bu - bi + M2(1,5)= 4.4602
mean_error= mean (mean(abs(M-M2))) = 0.1933

For k = 3;
M3 = U3*S3*(Items3)'
prediction3 = (µ) - bu - bi + M3(1,5)= 4.0356
mean_error= mean (mean(abs(M-M3))) = 0.0624

!42

Recommendation Systems

Matrix factorization

However,

svd needs full matrices.

Earlier works relied on imputation:

• increases enormously the amount of data to be handled

• data is distorted due to inaccurate imputations

!43

Recommendation Systems

Matrix factorization

To compute all estimators, Koren and Bell, set an
optimization problem that admits an efficient solution and
avoids the problem of missing values

qi and pu are vectors of k components inspired in rows and
columns of the svd full matrix approach

!44

8 Yehuda Koren and Robert Bell

is created by also adding in the aforementioned baseline predictors that depend only
on the user or item. Thus, a rating is predicted by the rule

r̂ui = µ+bi+bu+qTi pu . (2)

In order to learn the model parameters (bu,bi, pu and qi) we minimize the regu-
larized squared error

min
b∗,q∗,p∗

∑
(u,i)∈K

(rui−µ−bi−bu−qTi pu)2+λ4(b2i +b2u+‖qi‖2+‖pu‖2) .

The constant λ4, which controls the extent of regularization, is usually determined
by cross validation. Minimization is typically performed by either stochastic gradi-
ent descent or alternating least squares.
Alternating least squares techniques rotate between fixing the pu’s to solve for the

qi’s and fixing the qi’s to solve for the pu’s. Notice that when one of these is taken as
a constant, the optimization problem is quadratic and can be optimally solved; see
[2, 4].
An easy stochastic gradient descent optimization was popularized by Funk [10]

and successfully practiced by many others [17, 23, 24, 28]. The algorithm loops
through all ratings in the training data. For each given rating rui, a prediction (r̂ui)
is made, and the associated prediction error eui

def
= rui− r̂ui is computed. For a given

training case rui, we modify the parameters by moving in the opposite direction of
the gradient, yielding:

• bu ← bu+ γ · (eui−λ4 ·bu)
• bi ← bi+ γ · (eui−λ4 ·bi)
• qi ← qi+ γ · (eui · pu−λ4 ·qi)
• pu ← pu+ γ · (eui ·qi−λ4 · pu)

When evaluating the method on the Netflix data, we used the following values for
the meta parameters: γ = 0.005,λ4 = 0.02. Henceforth, we dub this method “SVD”.
A general remark is in place. One can expect better accuracy by dedicating sepa-

rate learning rates (γ) and regularization (λ) to each type of learned parameter. Thus,
for example, it is advised to employ distinct learning rates to user biases, item biases
and the factors themselves. A good, intensive use of such a strategy is described in
Takács et al. [29]. When producing exemplary results for this chapter, we did not
use such a strategy consistently, and in particular many of the given constants are
not fully tuned.

3.2 SVD++

Prediction accuracy is improved by considering also implicit feedback, which pro-
vides an additional indication of user preferences. This is especially helpful for those

8 Yehuda Koren and Robert Bell

is created by also adding in the aforementioned baseline predictors that depend only
on the user or item. Thus, a rating is predicted by the rule

r̂ui = µ+bi+bu+qTi pu . (2)

In order to learn the model parameters (bu,bi, pu and qi) we minimize the regu-
larized squared error

min
b∗,q∗,p∗

∑
(u,i)∈K

(rui−µ−bi−bu−qTi pu)2+λ4(b2i +b2u+‖qi‖2+‖pu‖2) .

The constant λ4, which controls the extent of regularization, is usually determined
by cross validation. Minimization is typically performed by either stochastic gradi-
ent descent or alternating least squares.
Alternating least squares techniques rotate between fixing the pu’s to solve for the

qi’s and fixing the qi’s to solve for the pu’s. Notice that when one of these is taken as
a constant, the optimization problem is quadratic and can be optimally solved; see
[2, 4].
An easy stochastic gradient descent optimization was popularized by Funk [10]

and successfully practiced by many others [17, 23, 24, 28]. The algorithm loops
through all ratings in the training data. For each given rating rui, a prediction (r̂ui)
is made, and the associated prediction error eui

def
= rui− r̂ui is computed. For a given

training case rui, we modify the parameters by moving in the opposite direction of
the gradient, yielding:

• bu ← bu+ γ · (eui−λ4 ·bu)
• bi ← bi+ γ · (eui−λ4 ·bi)
• qi ← qi+ γ · (eui · pu−λ4 ·qi)
• pu ← pu+ γ · (eui ·qi−λ4 · pu)

When evaluating the method on the Netflix data, we used the following values for
the meta parameters: γ = 0.005,λ4 = 0.02. Henceforth, we dub this method “SVD”.
A general remark is in place. One can expect better accuracy by dedicating sepa-

rate learning rates (γ) and regularization (λ) to each type of learned parameter. Thus,
for example, it is advised to employ distinct learning rates to user biases, item biases
and the factors themselves. A good, intensive use of such a strategy is described in
Takács et al. [29]. When producing exemplary results for this chapter, we did not
use such a strategy consistently, and in particular many of the given constants are
not fully tuned.

3.2 SVD++

Prediction accuracy is improved by considering also implicit feedback, which pro-
vides an additional indication of user preferences. This is especially helpful for those

Recommendation Systems

Matrix factorization

The optimization problem can be solved

Alternating least squares technique rotate between

fixing the pu’s to solve for the qi’s, and

fixing the qi’s to solve for the pu’s

(each are quadratic problems that can be
optimally solved)

Stochastic Gradient Descent

!45

Recommendation Systems

Matrix factorization

The optimization problem can be solved

Stochastic Gradient Descent

!46

γ = 0.005;λ4 = 0.02;
for rui ∈ K do

r̂ui = µ+ bi = bu + qTi pu;
eui = rui − r̂ui;
bu ← bu + γ · (eui − λ4 · bu);
bi ← bi + γ · (eui − λ4 · bi);
qi ← qi + γ · (eui · pu − λ4 · qi);
pu ← pu + γ · (eui · qi − λ4 · pu);

end for

1

Recommendation Systems

Matrix factorization with implicit
feedback

Considering the set R(u) of items that each user u has rated as an implicit feedback

!47

γ = 0.005;λ4 = 0.02;
for rui ∈ K do

r̂ui = µ+ bi = bu + qTi pu;
eui = rui − r̂ui;
bu ← bu + γ · (eui − λ4 · bu);
bi ← bi + γ · (eui − λ4 · bi);
qi ← qi + γ · (eui · pu − λ4 · qi);
pu ← pu + γ · (eui · qi − λ4 · pu);

end for

γ = 0.007;λ5 = 0.005;λ6 = 0.015;
repeat

for rui ∈ K do
r̂ui = µ+ bi = bu + qTi pu;
eui = rui − r̂ui;
bu ← bu + γ · (eui − λ5 · bu);
bi ← bi + γ · (eui − λ5 · bi);
qi ← qi + γ · (eui · (pu + |R(u)|−1/2 ∑

j∈R(u) yj)− λ6 · qi);
pu ← pu + γ · (eui · qi − λ6 · pu);
for j ∈ R(u) do

jj ← yj + γ · (eui · |R(u)|−1/2
qi − λ6 · yj);

end for
end for
γ = γ · 0.9

until convergence %around 30 iterations

with implicit feedback

r̂ui = µ+ bi + bu + qTi

(
pu +

∑
j∈R(u) yj√
|R(u)|

)

1

Recommendation Systems

Matrix factorization scores

SVD method, with improvements in temporal drift and
implicit feedback increases its performance. The value of the
rank k is also significant

!48

k=10 k=20 k=50 k=100 k=200
SVD 0,9140 0,9074 0,9046 0,9025 0,9009

SVD++ 0,9131 0,9032 0,8952 0,8924 0,8911
times SVD++ 0,8971 0,8891 0,8824 0,8805 0,8799

Recommendation Systems

Matrix factorization scores

Finally, with some extra improvements in the algorithms to solve
the optimization problems, the team of Koren and Bell won the
Netflix Prize with a

 RMSE = 0.8567

Remember that the second team (The Ensemble) reached the
same score. The victory was awarded to Koren and Bell since their
results were submitted 20 minutes before.

!49

Recommendation Systems

Other Recommender Systems

• Playlists:

Shuo Chen, Joshua Moore,
Douglas Turnbull, Thorsten
Joachims, Playlist Prediction via
Metric Embedding, ACM
Conference on Knowledge
Discovery and Data Mining
(KDD), 2012.

!50

Recommendation Systems

References

• Yehuda Koren, Robert M. Bell: Advances in Collaborative
Filtering. Recommender Systems Handbook 2011: 145-186

• William W. Cohen: Collaborative Filtering: A Tutorial. Carnegie
Mellon University

• Dietmar Jannach, Gerhard Friedrich: Tutorial: Recommender
Systems. International Joint Conference on Artificial
Intelligence (IJCAI). Barcelona, July 17, 2011. TU Dortmund,
Alpen‐Adria Universität Klagenfurt)

!51

