Machine Learning
CS 4780/5780 - Fall 2012
Cornell University
Department of Computer Science

Recommendation
Systems

Antonio Bahamonde

Centro de Inteligencia Artificial.
Universidad de Oviedo at Gijon. Spain

Spanish Association for Artificial Intelligence

From 9/2012 till 7/2013
Visiting Professor in Cornell University

Contents

® Definitions

® Netflix Prize

® Similarity based methods
® Matrix factorization

® References

Recommendation Systems

RS: Definitions

RS help to match users with items
® FEase information overload
® Sales assistance (guidance, advisory, persuasion,...)

RS are software agents that elicit the interests and preferences of
individual consumers [...] and make recommendations accordingly.

Different system designs / paradigms
® Based on availability of exploitable data
® |mplicit and explicit user feedback

® Domain characteristics

Recommendation Systems

Purpose and success criteria

Retrieval perspective
® Reduce search costs Recommend items
from the long tail

* Provide "correct”
proposals — Users know

in advance what they want
T * *

Long Tail

Popularity

Recommendation
perspective

* Serendipity— identify items
from the Long Tail —Users
did not know about

existence

Products

Recommendation Systems

Purpose and success criteria

Prediction perspective
* Predict to what degree users like an item
* Most popular evaluation scenario in research
Interaction perspective

* Give users a "good feeling" — Educate users about the product
domain

* Convince/persuade users - explain
Finally, commercial perspective

* Increase "hit", "clickthrough", "lookers to bookers" rates

e Optimize sales margins and profit

Recommendation Systems

Popular RS

® Google ® Amazon
® Genius (Apple) ® Netflix

® |ast.fm ® T[iVo

Recommendation Systems

Popular RS:Waze

wQze
WO o0 o0

Now in the first line of actuality since Apple suggested
its use instead of the failed new maps in iOS6.

Recommendation Systems 38

Popular RS
(in everyday life)

* Bestseller lists

* Top 40 music lists

* The“recent returns” shelf at the library

* Unmarked but well-used paths thru the
woods

* Most popular lists in newspapers

* Many weblogs

e “Read any good books lately?”

Recommendation Systems

Collaborative Filtering

The most prominent approach to RS

* used by large, commercial e-commerce sites
* well-understood, various algorithms and variations exist
e applicable in many domains (book, movies, DVD:s, ..)

Approach

e use the "wisdom of the crowd" to recommend items
(crowdsourcing)

Basic assumption and idea

* users give ratings to catalog items (implicitly or explicitly)
* customers who had similar tastes in the past, will have similar
tastes in the future

Recommendation Systems 10

Collaborative Filtering

® Relate two fundamentally different entities: users
and items

explicit feedback (ratings)
implicit (purchase or browsing history, search patterns,...)
sometimes items descriptions by feature (content based)

® Approaches:

neighborhood
latent factor

Recommendation Systems

11

Naive Neighborhood approach

® [tem-item ® user-user

alice 3 3 4 4 ?
user 3 1 2 3 3
userz2 4 3 4 3 3
user3 3 3 1 S 4
user4 1 3 S 2 1

Compute similarity and then prediction

Recommendation Systems

12

Naive Neighborhood approach

® user-user

alice

useri

user2

user3

user4

WA |®]|O

| W |=]®

AA|l=|H N>

N TOAlW|W|HS

Recommendation Systems

13

Naive Neighborhood approach

® |tem-item

useri

user2

user3

user4

WP |W

| W|W|=]W

AN|=1HS-IDN]|PH

N|JOT|W]| W

| B OA|W]|

Recommendation Systems

14

Naive Neighborhood approach

® How to measure similarities?

e correlation r(a,b)
a,b

la]/l|b]

2wt o ST, W) (1 (us 7) — (W,)

: /
Zu,#u sim(u, u')
similar formula for item-item

® cosine cas(a, b) —

b(u,i) = r(u,-)

Recommendation Systems 15

Naive Neighborhood approach

user-user using 2 neishbors

O R o N R R
4,00 alice 3 3 4 4 ?
2,25 0,853 user1 3 1 2 3
3,50 0,707 user2 4 3 4 3
3,00 0 user3 3 3 1 5 4
3,25 -0,792 user4 1 5 5 2 1

b(alice,itemb) = 4

Recommendation Systems

(3 —2.25) % 0.853 + (5 — 3.5) = 0.707

0.803 + 0.707

= 9.09

16

Naive Neighborhood approach

item-item
using 2 neighbors

b(alice,itemb) = 3.25 A

Recommendation Systems

alice a 4 ” ?
user1 3 1 2 3 3
userz2 4 3 4 3 3
user3 3 3 1 S 4
user4 1 3 S 2 1
p(item5, z) 0,969 | -0,478 | -0,428 | 0,582
(-, 1) 3,2 3,0 3,2 34 | 325
(5 —3.2) *0.969 + (4 — 3.4) * 0.582 Y

0.969 -

- 0.082

17

Naive Neighborhood approach

® Scalability
® user-user is a memory based method
® millions of users

® does not scale for most real-world
scenarios

Recommendation Systems 18

Naive Neighborhood approach

® |tem-item

Recommendation Systems

is model based

models learned offline are stored for
predictions at run-time

allows explanations

no cold start problem

19

Naive Neighborhood approach

® However in all cases

® not all neighbors should be taken into
account (similarity thresholds)

® not all item are rated (co-rated)

® not involved the loss function

Recommendation Systems 20

Netflix Prize

€he New York Eimes (Sep. 21, 2009).
Netflix Awards $1 Million Prize and Starts a New Contest
[...]try to predict what movies particular customers would prefer
“Accurately predicting the movies Netflix members will love 1s a

key component of our service,” said Neil Hunt, chief product
officer (Netflix)

cam S

GROIA Ee".l'r(vr's Ffagrm‘nc C\wx, $ 1,000,000 & '
ourr ONE. MILLION oo
ron The Netflix Prize (7

Recommendation Systems

21

Netflix Prize

The Netflix dataset
more than 100 million movie ratings (1-5 stars)
Nov | I, 1999 and Dec 31, 2005
about 480, 189 users and n = | 7,770 movies
99% of possible rating are missing
movie average 5600 ratings
user rates average 208 movies

training and quiz (test-prize) data

Recommendation Systems

22

Netflix Prize

The loss function: root mean squared error (RMSE)

RMSE — \/ — ST (i) — bu,)2

‘QU/LZ‘ (u,1)EQuiz

Netflix had its own system, Cinematch, which achieved
0.9514.

The prize was awarded to a system that reach RMSE
below 0.8563 (10% improvement)

23

Recommendation Systems

Netflix Prize

® | eaderboard

Vandelay United

Team RMSE| Date Hour
1 BellKor's Pragmatic Chaos| 0,8567| 26/07/09| 18:18:28
2 The Emsemble 0,8567| 26/07/09 18:38:22
3 Grand Prize Team 0,8582(10/07/09 21:24:40
4 |Opera Solutions and 0,8588| 10/07/09| 01:12:31

Recommendation Systems

24

Netfilx prize winners

Yehuda Koren, Robert M. Bell: Advances in Collaborative
Filtering. Recommender Systems Handbook 201 I: 145-186

Yehuda Koren, Yahoo! Research

Robert Bell, AT&T Labs — Research

Discuss similarity and matrix factorization approaches

Recommendation Systems 25

Similarity approach revisited

3 major components:
® data normalization
® neighbor selection

® determination of interpolation weights

Recommendation Systems

26

Baseline approach

Example: Titanic and Joe
® Average in Netflix: 3.7
® Joe critical: 0.3 less than average

® Titanic: 0.5 more than average (all users)

b(Joe, Titanic) = 3.7 - 0.3 + 0.5 = 3.9

b(u7 Z) = KT b(ua) T b(? Z)
bu,i :,u_l_bu_l_bi

Recommendation Systems

27

Baseline approach

The equations sound appealing, but Koren and Bell
propose to learn it using a least square approach:

: o 1.)\2 2 2
Hlin 2 (rui — u — by — b;) +A1(Ebu‘|‘2bz)

(u,i)ext T, ;
where

H = {(u,i) | ry is known}

and the last term is a regularization term to avoid
overfitting

Recommendation Systems

28

Baseline approach

In the Netflix data

The average rating (u) = 3.6
Learned bias
user (by) has average 0.044
their absolute value (|byl) is 0.32
item (movie) (bi) has average -0.26 (s.d. 0.48),

(Ibi]) is 0.43
baseline Cinematch Prize
RMSE 0,9799 0,9514 0,8567

Recommendation Systems

Improvements

® Koren & Bell report significant improvements

adding

® temporal dynamics (temporal drift of

preferences)

® implicit feedback (movie rental history (not

available; rated movies!),

baseline

+ temporal

+tem (spline)

Cinematch

Prize

RMSE

0,9799

0,9771

0,9603

0,9514

0,8567

Recommendation Systems

30

Matrix factorization

® Tries to capture users and items relationships

® Based on well-known algebraic decomposition of
matrices used before in Information Retrieval (LSI)

® |ntended idea: consider latent variables

® As implemented by Koren and Bell, this approach
won the Netflix Prize

Recommendation Systems 31

Matrix factorization

® Transform both items and users into a feature space
of lower dimensionality (k), the latent space

® Tries to explain ratings by characterizing both items

and users on factors automatically learned from data.

® Factors might measure aspects as comedy, drama,
amount of action, ...

® Efficient implementation offline

® Admit improvements in temporal drift and implicit
feedback

Recommendation Systems

32

Matrix factorization (SVD)

SVD (singular value decomposition). Matrix M with rows
users and columns items

M = U-S+(ltems)’
where
UTU = (Items)"(ltems) = |
S = diag(si,...,8n), S1>82,...8,_1 > Sp >0

VS = diag(y/51, - - -, /5n)

and then
M = (U «V8S) % (VS * Items?T)

Recommendation Systems

33

Matrix factorization (SVD)

If we use only k dimensions

M = Mk = UiSk+(ltemsk)’

This is a matrix of rank k. The most similar to M with this rank.

#ltems
A A
(Itemsk)’ K
Mk = #Users
v
\

M, = Uk*\/ k*]temsf‘kr)

Recommendation Systems

34

Matrix factorization

Algorithm

et M =ryi- (M) - bu - bi;
U S Items] = svd(M);

J rep = Uk sqrt(Sk);

tems_rep = ltemsk ~ sqrt(Sk),

My, = (U * / Sk) * (\/ Sk * [tems

Recommendation Systems

T
k

)

35

In this case M

Matrix factorization

alice 3 3 4 4 ? 0,80
user! | 3 : 2 3 3 10,80
user2 | 4 3 4 3 5 0,60
user3 3 3 1 5 4 0,00
user4 1 5 5 2 1 -0,40

| b | 000 [-020 [000 [020 [000 P 320

Recommendation Systems

36

M = rui- (M) - bu - bi;

Matrix factorization

%fill missing values with 0O

item item2 | item3 | item4 | itemb
alice 1,0 -0,8 0,0 -0,2 0,0
user1 0,6 -1,2 -0,4 0,4 0,6
userz2 0,2 -0,6 0,2 -1,0 1,2
user3 -0,2 0,0 -2,2 1,6 0,8
user4 -1,8 2,4 2,2 -1,0 -1,8

Recommendation Systems

37

U =

Recommendation Systems

Matrix factorization

M [U S ltems] = svd(M);

-0,143| 0,348 0,445] -0,500f 0,640
-0,290| 0,185 0,148 0,842 0,389
-0,097] 0,478 -0,838] -0,096| 0,226
-0,406| -0,762| -0,263| -0,118| 0,414
0,849 -0,188 -0,096| 0,136 0,465
4,971 0,000{ 0,000 0,000 0,000
0,000 2,591 0,000 0,000{ 0,000
0,000 0,000 1,258 0,000{ 0,000
0,000 0,000 0,000 0,440 0,000
0,000 0,000 0,000 0,000{ 0,000

38

[U S Items] = svd(M),

ltems =

Recommendation Systems

Matrix factorization

-0,359 | 0,403 | 0,471 | -0,536 | -0,447
0,515 | -0,478 | -0,208 | -0,513 | -0,447
0,575 | 0,496 | 0,111 0,459 | -0,447
-0,300 | -0,581 | 0,385 | 0,474 | -0,447
-0,431 | 0,159 | -0,758 | 0,116 | -0,447

39

Matrix factorization

Sk —

4,971 0,000
0,000 2,591
0,000(0,000

Fork =2
Uk —
-0,143] 0,348
-0,290f 0,185
-0,097(0,478
-0,406| -0,762
0,849 -0,188

Recommendation Systems

ltemsy =
-0,359 | 0,403
0,515 | -0,478
0,575 0,496
-0,300 | -0,581
-0,431 | 0,159

40

Matrix factorization

k=2 1y U2
: -
05 ® Alice
. o U1
O n
-0.5
—1 y
e U3
-1.5 ' ' |
-1 -0.5 0.5 1.5

Recommendation Systems

U4

41

Matrix factorization

Fork = 2;
M2 = U2*S2*(Items2)’
prediction2 = (M) - by - bi + M2(1,5)= 4.4602
mean_error= mean (mean(abs(M-M2))) = 0.1933

Fork = 3;
M3 = U3*S3*(Items3)’
prediction3 = (M) - bu - bi + M3(1,5)= 4.0356
mean_error= mean (mean(abs(M-M3))) = 0.0624

Recommendation Systems 42

Matrix factorization

However,
svd needs full matrices.

Earlier works relied on imputation:

* increases enormously the amount of data to be handled
* data is distorted due to inaccurate imputations

Recommendation Systems

43

Matrix factorization

To compute all estimators, Koren and Bell, set an
optimization problem that admits an efficient solution and
avoids the problem of missing values

min M (rui = —bi = by —qj pu)” +Aa(b + b+ lgil|* + | pul?)
il (u,i)ex

f'ui: M"‘bi_l_bu_'_qlrpu

gi and p, are vectors of k components inspired in rows and
columns of the svd full matrix approach

Recommendation Systems 44

Matrix factorization

The optimization problem can be solved
Alternating least squares technique rotate between
fixing the py’s to solve for the gj's, and
fixing the gi’'s to solve for the p,’s

(each are quadratic problems that can be
optimally solved)

Stochastic Gradient Descent

Recommendation Systems

45

Matrix factorization

The optimization problem can be solved

Stochastic Gradient Descent

v = 0.005; Ay, = 0.02;
for r,; € # do
Pui = f+ bi = by + ¢ pu;
Cui = Tui — Tuis
bu %bu+7-(em—)\4-bu);
bi <= b + 7 - (€wi — Aq - bi);
q; < 4 -—7'(€ui'pu—)\4'q@');
Pu < Pu ’7'(6ui'Qi_)\4'pu);
end for

Recommendation Systems

46

Matrix factorization with implicit
feedback

Considering the set R(u) of items that each user u has rated as an implicit feedback

v = 0.007; As = 0.005; \¢ = 0.015;
repeat
for r,; € # do
Fui = p 4 by = by + ¢ Pu;
Cui — Tui — rﬁuﬁ
by < by + 77 (eui — As - by);
bi <= b; + v (euws — A5 - b;);
i < ¢+ (wi (Pu+ ‘R(U)’_l/Q ZjER(u) Yi) = A6 Gi);
Pu < DPu+ 7 (€ui G — X6 DPu);
for j € R(u) do
Ji = yi v (ews - |R(@)] %0 = X -);
end for
end for
v=~-0.9
until convergence %around 30 iterations

Recommendation Systems 47

Matrix factorization scores

SVD method, with improvements in temporal drift and
implicit feedback increases its performance. The value of the
rank k is also significant

k=10 k=20 k=50 k=100
SVD 0,9140 | 0,9074 | 0,9046 | 0,9025 | 0,9009
SVD++ 0,9131 | 0,9032 | 0,8952 | 0,8924 | 0,8911
times SVD++ | 0,8971 | 0,8891 | 0,8824 | 0,8805 | 0,8799

Recommendation Systems

48

Matrix factorization scores

Finally, with some extra improvements in the algorithms to solve
the optimization problems, the team of Koren and Bell won the
Netflix Prize with a

RMSE = 0.8567

Remember that the second team (The Ensemble) reached the
same score. The victory was awarded to Koren and Bell since their
results were submitted 20 minutes before.

Recommendation Systems 49

Other Recommender Systems

LME Music Embedding Demo

(For best results, please use a Google Chrome browser.)

Artist Lookup: [Go |
® Playlists: 6

Shuo Chen, Joshua Moore, 4

Douglas Turnbull, Thorsten

Joachims, Playlist Prediction via

Metric Embedding, ACM .

Conference on Knowledge

Discovery and Data Mining 2

(KDD), 2012. .
PlaylisiSeed;) b ! ’ 1 : ple:se clic: a poim5
Sequencial Coherence (alpha = 1.0): large steps === small steps
Popularity Bias (beta = 1.0): obscure =0 popular
Diversity (gamma = 0.2): drift away from seed =0} stay close to seed
Number of Songs (10): fewer == more
Playlist Construction (deterministic): max probability €y==————== gstochastic

“Generate Playlist

Recommendation Systems 50

References

* Yehuda Koren, Robert M. Bell: Advances in Collaborative
Filtering. Recommender Systems Handbook 201 |: 145-186

e William W. Cohen: Collaborative Filtering: A Tutorial. Carnegie
Mellon University

* Dietmar Jannach, Gerhard Friedrich: Tutorial: Recommender
Systems. International Joint Conference on Artificial

Intelligence (IJCAIl). Barcelona, July 17,201 1. TU Dortmund,
Alpen-Adria Universitat Klagenfurt)

Recommendation Systems 51

