CS4780/5780 - Machine Learning

Fall 2012

Thorsten Joachims
Cornell University
Department of Computer Science

Outline of Today

- Who we are?
 - Prof: Thorsten Joachims
 - TAs: Joshua Moore, Igor Labutov, Moontae Lee
 - Consultants: Declan Boyd, Harry Terkelsen, Jason Zhao, Joe Mongeluzzi, Kyle Hsu, Emma Kilfoyle, ...
- What is learning?
 - Why should a computer be able to learn?
 - Examples of machine learning.
 - What it takes to build a learning system?
- Syllabus
- Administrivia

(One) Definition of Learning

- Definition [Mitchell]:
 - A computer program is said to learn from
 - experience E with respect to some class of
 - tasks T and
 - performance measure P,
 - if its performance at tasks in T, as measured by P,
 - improves with experience E.

Syllabus

- Concept Learning: Hypothesis space, version space
- Instance-Based Learning: k-nearest neighbor, collaborative filtering
- Decision Trees: TDIDT, attribute selection, pruning and overfitting
- ML Experimentation: hypothesis tests, resampling estimates
- Linear Rules: Perceptron, duality, mistake bound
- Support Vector Machines: optimal hyperplane, kernels, stability
- Generative Models : Naïve Bayes, linear discriminant analysis
- Hidden Markov Models: probabilistic model, estimation, Viterbi
- Structured Output Prediction: predicting sequences, rankings, etc.
- Learning Theory : PAC learning, mistake bounds
- Clustering : HAC Clustering, k-means, mixture of Gaussians
- Recommendation: similarity-based methods, matrix factorization

Textbook and Course Material

- Main Textbooks
 - Tom Mitchell, "Machine Learning", McGraw Hill, 1997.
 - CS4780 Course Pack from Campus Store
- Additional References (optional)
 - Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 2004.
 - See other references on course web page.
- Course Notes
 - Slides available on course homepage
 - Material on blackboard

Pre-Requisites and Related Courses

- Pre-Requisites
 - Programming skills (e.g. CS 2110)
 - Basic linear algebra (e.g. MATH2940)
 - Basic probability theory (e.g. CS 2800)
 - → Short exam to test prereqs
- Related Courses
 - CS4700: Foundations of Artificial Intelligence
 - CS4758: Robot Learning
 - CS4300: Information Retrieval
 - CS6780: Advanced Machine Learning
 - CS6784: Advanced Topics in Machine Learning
 - CS6740: Advanced Language Technologies

Homework Assignments

Assignments

- 5 homework assignments
- Some problem sets, some programming and experiments

Policies

- Assignments are due at the beginning of class on the due date in hardcopy. Code must be submitted via CMS by the same deadline.
- Assignments turned in late will be charged a 1 percentage point reduction of the cumulated final homework grade for each period of 24 hours for which the assignment is late.
- Everybody had 5 "free" late days. Use them wisely.
- No assignments will be accepted after the solutions have been made available (typically 3-4 days after deadline).
- Typically collaboration of two students (see each assignment for detailed collaboration policy).
- We run automatic cheating detection. Must state all sources of material used in assignments or project. Please review Cornell Academic Integrity Policy!

Exams and Quizzes

- In-class Quizzes
 - A few per semester
 - No longer than 5 minutes
- Exams
 - Two Prelim exams
 - October 16 (week after fall break)
 - November 20 (week of thanksgiving break)
 - In class
 - No final exam

Final Project

Organization

- Self-defined topic related to your interests and research
- Groups of 3-4 students
- Each group has TA as advisor

Deliverables

- Project proposal (~ 2 weeks after fall break)
- Meetings with TA to discuss progress
- Short presentation (last week of classes)
- Project report (~ exam period)

Grading

Deliverables

– 2 Prelim Exams (40% of Grade)

Final Project (15% of Grade)

Homeworks (~5 assignments) (35% of Grade)

– Quizzes (in class) (5% of Grade)

– PreReq Exam (2% of Grade)

Participation (3% of Grade)

Outlier elimination

 For homeworks and quizzes, the lowest grade is replaced by the second lowest grade.

How to Get in Touch

- Online
 - http://www.cs.cornell.edu/Courses/cs4780/2012fa/
 - Piazza forum
 - Videonote (Fall 2011)
- Email Addresses
 - Thorsten Joachims: tj@cs.cornell.edu
 - Igor Labutov: <u>iil4@cornell.edu</u>
 - Moontae Lee: <u>ml2255@cornell.edu</u>
 - Joshua Moore: jlm434@cornell.edu
 - Declan Boyd, Harry Terkelsen, Jason Zhao, Joseph Mongeluzzi,
 Kyle Hsu, Emma Kilfoyle
- Office Hours
 - Thorsten Joachims:
 - Thursdays 2:40pm 4:00pm, 4153 Upson Hall
 - Other office hours:
 - TBD