CS478 - Machine Learning Tentative Syllabus - Spring 2002

M = Mithcel, D = Duda, Hart & Stork

- Introduction
 - M chap. 1, D chap. 1 (Week 1)
 - What is machine learning?
- Non-metric methods, inductive inference **D** chap. 8, M chap. 2-3 (Week 1-3)
 - Concept learning
 - Decision trees
 - Strings based methods (maybe)
- Bayesian Learning
 - **D** chap. **2-3**, **M** chap. **6** (Weeks 3-7)
 - Bayesian decision theory
 - ML, MAP and Bayesian Parameter Estimation
 - Sufficient statistics (maybe)
 - Hypothesis evaluation using Bayes Theorem
 - Bayes optimal classifier and Naive Bayes
 - Gibbs algorithm
 - Bayesian belief networks
 - The EM algorithm
 - Hidden Markov models
- Nonparametric Techniques
 - D chap. 4, M chap. 8 (Week 7-8)
 - Density Estimation
 - Parzen Windows
 - The nearest neighbor algorithm
- Linear discriminant functions
 - **D** chap. **5**, **M** chap. **4** (Weeks 8-9)
 - LD functions and decision surfaces
 - The perceptron function
 - Relaxation and MSE procedures
 - Support vector machines (maybe..)

- Artificial neural networks
 D chap. 6, M chap. 4 (Weeks 9-10)
 - Feedforward operation
 - Backpropagation algorithm
 - Feature mapping
 - Improving performance
- Stochastic methods
 D chap. 7, M chap. 9 (Week 10-11)
 - Genetic algorithms
 - Genetic programming
 - Simulated annealing
- Hypothesis evaluation and model selection
 D chap. 9, M chap. 5 (Week 11-12)
 - Sample error vs. true error
 - Confidence intervals
 - Comparing hypotheses
 - K-fold cross validation
 - The no free lunch theorem
 - MDL principle
- Unsupervised Learning **D** chap. 10 (Weeks 12-14)
 - Mixture densities
 - The maximum likelihood estimates
 - The iterative EM clustering algorithm
 - The K-means clustering algorithm
 - Hierarchical clustering
 - Principal component analysis
 - Multidimensional scaling
 - Kohonen networks