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Abstract— In this paper, we focus on the use of the Adept 

Arm Robot for determining the proper placement of a number 

of objects by using point cloud data from a Microsoft Kinect 

mounted on the arm. In this work, we also present a significant 

data set consisting of 9585 labels across 35 objects placed on 6 

flat surfaces. This work also looks at 3711 labels across 4-35 

objects on 3 non-flat surfaces. Building SVM models from 

features extracted from these labels, we were able to attain 

performances in excess of 80% for both precision and recall for 

our test sets for both flat and non-flat surfaces. In our robot 

experimentation, we demonstrated the usefulness of our best-

performing model by having the robot place objects on a 

number of surfaces. 

I. INTRODUCTION 

BJECT placement plays a crucial role in many 

applications. Stable object placement ensures that an 

object is undamaged and remains at the same location, 

making future localization of this object easier. However, it 

remains a difficult task for robots because stable placements 

of objects are not always clear. Robots often lack the kinds 

of a priori knowledge of objects that humans usually have. 

This knowledge ranges from previous experience of how 

similar objects should be placed, material properties of the 

object which may affect its stability, to knowledge of the 

role that physics would play on certain objects. Furthermore, 

robots often lack the fine tactile feedback that humans can 

use to determine if a placed object is stable and not leaning 

or rotating. 

 In this paper, we consider the particular challenge of 

object placement of a number of known objects on a variety 

of surfaces. We focused on the construction of a significant 

dataset as well as determining which SVM models most 

accurately predict good and bad placements. We also 

compared our models with a synthetic dataset as a 

benchmark as part of our offline experiments. 

II. HARDWARE PLATFORM 

For our project, we are using an Adept Viper s850 arm 

with a gripper installed. We used a robot-mounted Microsoft 

Kinect to obtain object point cloud data. Since the gripper 

does not have tactile feedback, all information regarding the 

initial grip of an item and its orientation must be given 

beforehand, usually hard coded.  It could also lead to 

unstable placement of objects if the object shifts while being 
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held. Our project uses Robot Operating System (ROS)’s 

Diamondback distribution running on an installation of 

Ubuntu 10.10 (Maverick Meerkat). 

 

III. APPROACH 

A. Data  

For our project, we needed a large dataset of labels of 

good and bad object placements in order to train our model 

so that it would be able to make a good hypothesis regarding 

stable object placements. However, we found that there were 

no significantly large datasets that would be suitable for our 

particular task. This proved problematic as our initial work 

relied on relatively small sets that we had gathered over a 

limited number of objects-surface combinations. These 

datasets proved to be of insufficient size to produce a good 

model. Furthermore, as our initial placement labeling had 

many more bad placements than good placements, our 

results were affected in that our model believed that any 

object-surface placement was likely to be bad. Since our 

combination of features also varied significantly in 

magnitude, lack of feature normalization likely played a 

role. 

 Thus, we realized the need to obtain point cloud data for 

a larger set of objects and surfaces to create a dataset 

containing a range of good to bad placements. This was 

accomplished by using a preexisting script to capture point 

cloud data from a variety of angles using the Adept arm. We 

cleaned this point cloud data and combined them in order to 

create a more complete model of the object. Additionally, 

when labeling, we also made sure to have a sufficient 
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number of good placements in our data. 

 

1) Flat Surfaces 

We gathered point cloud data and labeling information for 

a variety of object and surfaces (Table 1). The first 20 

object-environment combinations have around 20 labels 

each; later ones had around 50-80 labels each. 

 

 
 

The placements were manually labeled with a value 

between 0 and 10, with 10 being a perfect or close to perfect 

placement and 0 being a poor/impossible placement.  

We defined good placements as placements where the 

object would remain stable in the environment. This means 

that the object would not fall once released, would remain 

on top of the surface, and should remain in its placed 

position. We define bad placements as placements where the 

object intersects the environment (impossible placements), 

would fall or tip onto the environment, or would not remain 

on top of the surface. 

Although the labels contained values between 0 and 10 

for their class, for this project, we treated them as a binary 

classification. Placement scores above 5 would be 

considered good and those 5 and below would be considered 

poor. Intermediate placements of 3, 5, or 7 were used 

depending on the shape of the objects. The favorability of 

placements was based on the human perception of good 

placement. For example the martini glass would have a 

placement of 10 if it was right side up on its base. A 

placement of 7 would be used if the martini glass were 

upside down on its head. A rating of 3 would be used to 

dictate the placement of glass on its rounded side showing a 

semi-favorable position with a reasonable amount of 

instability. Finally a 0 would be used if the glass was placed 

on the tip of its base or head or with part of the glass in the 

surface. With the variety of objects we used the labeling 

varied depending on the various positions deemed favorable 

via human perception and stability.  

The dataset as a whole contains 9585 labels, distributed 

between 2536 good and 7049 bad placements. 

 

2) Non-Flat Surfaces 

In addition to creating a large data set for flat surfaces, the 

problem of placing objects on more complex surfaces was 

also pursued. Not wanting to weaken placement 

performance on any one type of surface, different models 

were created for different types of surfaces in the hopes of 

increasing ideal placements for each different type of 

surface. The first non-flat surface that was modeled was a 

Wooden V-shaped or Slanted Dish Rack in which dishes are 

placed vertically. Unfortunately, within our wide array of 

objects, only a few could be placed on this surface. The 

object surface combination can be seen in the table below in 

Table II.  

A similar methodology was used in creating the labels for 

the wooden dish rack but the ideal positioning was one 

where vertically placed objects were ideal - which is very 

much counter to the original flat surface labeling data. The 

most ideal positions with a score of 10 would be placed in 

between the thin wooden slits being well supported in the 

dish rack. Poor placements of 5 and below were ones in 

which the object would fall into a random spot in the V-

shape of the dish rack. For the wooden dish rack the data of 

369 labels was split between 179 good placements and 190 

bad placements. 
 

TABLE II 

OBJECT AND WOODEN DISH RACK  

Object 

Yellow Martini Glass Black Bowl 

Green Mug Pink Bee Plate 

Environment 

Wooden Slanted Dish Rack 

 

The second non-flat surface that was modeled was a gray 

studded dish rack common in most dining halls and large 

kitchens. The flatness of the rack allowed for more objects 

to be placed inside of it but difficulties were encountered 

with large and awkwardly shaped objects as they did not fit 

between the studs. The object surface combinations can be 

seen below in Table III. 

Creating labels for the gray studded dish also had most 

ideal positions being vertical placements in between the 

studs. Some objects could be place similarly to the flat 

surface data in between the studs due to the objects small 

size. The most ideal positions with a score of 10 were 

objects that were well supported by the studs. Poor 

placements of 5 and below were used for placements on top 

TABLE I 

OBJECT AND FLAT SURFACES IN DATASET 

Object 

Air Pump Purple Barbell Squeaky Toy 

Yellow Martini Glass Orange Highlighter 

Green Mug Tissue box 

Black Bowl Soap Dispenser 

Orange Hippo Rubik's Cube 

Dish Rack 3-hole punch 

Red Plastic Cup Stapler 

Foam Stack Eyeglass Case 

Orange Cone Hairspray 

Pink Bee Plate Toilet Paper Roll 

Light Blue Barbell Vitamin Bottle 

Rabbit Cup Blue water bottle 

Black Bookend Computer Mouse 

Purple Seal Toy Headphones 

Duct Tape Binder 

Black Plastic Holder Graphing Calculator 

Green Ethernet Cable Travel Mug 

Rovio Robot Tissue box 

Environment 

Aerial Robot Box Rovio Box 

Air Robot Case Kinect Box 

Striped Padded Surface Ground 

Open Box 

 



  

of the studs or placements in which the object would fall or 

roll out of position. Bad placements were quite numerous in 

this data. For the gray studded dish rack the data of 1532 

labels was split between 328 good placements and 1204 bad 

placements. 

 
TABLE III 

OBJECT AND GRAY STUDDED DISH RACK  

Object 

Air Pump Purple Barbell Squeaky Toy 

Yellow Martini Glass Orange Highlighter 

Green Mug Tissue box 

Black Bowl Soap Dispenser 

Red Plastic Cup Stapler 

Foam Stack Eyeglass Case 

Orange Cone Hairspray 

Pink Bee Plate Vitamin Bottle 

Rabbit Cup Binder 

Black Bookend Graphing Calculator 

Purple Seal Toy Tissue box 

Green Ethernet Cable  

Environment 

Gray Studded Dish Rack 

 

 The final non-flat surface is inside a small open cardboard 

box (“Amazon box”). While it is flat, it makes for an 

interesting placement scheme. In this case, all objects could 

be placed inside the box except for a few. What makes the 

placement inside a box so interesting is avoidance of the 

walls during placement. The object box combinations can be 

seen above in Table III and it can be seen that all objects are 

compatible with it. 

Good placements, those with label of 10, were ones in 

which the object was placed in the center of the box. Bad 

placements in this case were numerous as with the gray dish 

rack. Bad placements included against the walls, on top of 

the walls, on the top flaps of the box, and outside the box. 

For Amazon Box, the dataset of 1756 labels was split 

between 184 good placements and 1572 bad placements. 

 

B. Features 

We explored a number of features of this placement 

dataset that would be able to accurately predict the 

placement of the object. These features gave mixed results. 

Object Centroid to Environment Distance: This feature 

attempted to capture the idea that objects which are stable 

should minimize the distance between its centroid and the 

environment. Unstable objects, such as tipped objects and 

objects that would fall would have higher distances. 

However, we realized that this would result in the classifier 

preferring non-ideal good placements over ideal good 

placements. For example, an inverted martini glass would 

have a shorter object centroid to environment distance than 

if it were placed properly. While both are good placements 

in that they are stable, the inverted martini glass is 

considered a less favorable placement. 

Sliding Window: This feature generated a box around the 

point cloud data of the object and subdivided this box into a 

number of user defined grid cells. It would then count the 

number of points within each grid cell. This attempted to 

capture the idea that stable object placements would have 

more points along the bottom grid cells and a lower number 

of them for a certain placement would indicate instability. 

However, we found that this feature did not result in good 

performance. Possible reasons are the incomplete nature of 

the collected point cloud data. For the cups, not as many 

points that can be seen on the cup bottoms, so that even with 

good placements, not a lot of points are in the lower grid 

cells. 

Supporting Contacts: This feature finds the number of 

supporting contact points between the environment and the 

object. Objects that have more supporting contacts with the 

environment should be more stable since objects that are 

tipped to the side or hovering over the environment would 

have less supporting contacts. This feature is good because it 

gives a second level of stability on top of our favorable 

human perceived placements. 

Histogram: This feature is a histogram of the points in 

the object point cloud in relation to the lowest point on the 

object. This captures similar data to the sliding window, 

although instead of being separated by grid cell, it is 

separated in two different dimensions. This feature gives a 

good distinction between object shapes, which is critical in 

stable object placement. 

We found that supporting contacts and histogram features 

gave the best results when used to train the support vector 

machine. Thus, we used those features in further 

experimentation. 

C. Evaluation 

1) Flat surface – good features 

Using both preexisting and our own feature generators, 

we generated a feature set from this dataset. We then tested 

the resulting set using 5-fold cross-validation. By adjusting 

various parameters of SVM-Light, an implementation of the 

support vector machine, we tested 605 different 

combinations of kernel and learning options for the classifier 

[2]. The kernel options used were: linear, polynomial, radial 

bias, sigmoid hyperbolic tangent, and as well hyperbolic 

tangent kernel functions. In addition to trying these kernel 

functions, we also adjusted their parameters to improve 

performance. The learning options used were: classification, 

regression, preference ranking, trade between training error 

and margin, epsilon width of tube for regression, cost-factor 

by which training errors on positive examples outweigh 

errors on positive examples, using biased hyperplanes 

instead of unbiased hyperplanes, and removing inconsistent 

training examples. We eventually narrowed down our focus 

to the models that gave the best recall, precision, and F1 

metrics. These metrics are defined in (1), (2), and (3) 

respectively. 
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The average metrics of the best performing models and 

various parameters are in Table IV for flat surfaces. 

 

 
ROC curves, or receiver operating characteristic curves, 

are a common tool used to evaluate learning algorithms. The 

ROC curves for the default SVM, 0.1 trade-off SVM, the 

biased hyperplane SVM, and the biased hyperplane with 

radial basis kernel SVM can be seen in figures (1), (2), (3), 

and (4), respectively. The four ROC curves plotted against 

each other for evaluation can be seen in (Figure 5). 

 

 
 

 

 

 
 

Figure 4.  SVM Model using a biased hyperplane and a radial basis 

kernel function for flat surfaces  

 

 

 
Figure 3.  SVM Model using a biased hyperplane and a polynomial 

kernel function for flat surfaces 

 

 

 
 

Figure 2.  SVM Model using a 0.1 trade-off between training and 

margin  and a polynomial kernel function for flat surfaces  

 

 

TABLE IV 

BEST PERFORMING MODELS FOR FLAT SURFACES 

Model Parameters Precision Recall F1 

Polynomial 0.822 0.696 0.754 

Polynomial, 0.1 trade-off b/w 

training & margin 
0.817 0.756 0.786 

Polynomial, Biased Hyperplane 0.788 0.875 0.829 

Radial Basis, Biased 

Hyperplane 
0.852 0.946 0.897 

Metrics obtained by averaging the results from the 5-fold cross-

validation. 

 

 

 
Figure 1.  Default SVM Model using a Polynomial Kernel Function 

for flat surfaces  

 

 



  

 
 

We see from (Figure 5) that the three models using the 

polynomial kernel function exhibit very similar ROC curves, 

while the radial basis kernel function with biased hyperplane 

displays significantly better true positive rates for lower 

false positive rates, and thus, has a slightly higher AUC 

(Table V). The best model found was the Radial Basis 

kernel with Biased Hyperplane.  

 

 
 

2) Non-flat Surfaces 

After extensively modeling the flat surface data it became 

time to view the non-flat surfaces performance as well.  

Support Vector Machine modeling was also used and a bit 

of experimentation was used to figure out the ideal models 

for each non-flat surface. For the wooden slanted dish rack 

two good models were found, which were Biased 

Hyperplane with the Radial Basis kernel and Polynomial 

kernel. The results can be seen in Table VI.  

 

 
 

The respective ROC curves for these models can be seen in 

Figure 6.  

 

 
 

The gray studded dish rack was then sent into the 

modeling and was also used with the Support Vector 

Machine. The best models found for this surface were the 

polynomial kernel and the radial basis kernel paired off with 

the biased hyperplane. The results of precision, recall, and 

F1 score can be seen in Table VII.   

 

 
 

The respective ROC Curves for the gray studded dish 

rack can be seen in Figure 7.  

 

 
 

 

  

 
Figure 7: Comparison ROC Curves fo the Gray Studded Dish Rack 

 
 

Figure 6: Comparison of ROC Curves for Wooden Slanted Dish Rack 

 

TABLE VI 

BEST PERFORMING MODELS FOR WOODEN SLANTED DISH RACK 

Model Parameters Precision Recall F1 

Polynomial 0.875 1.00 0.966 

Radial Basis, Biased 

Hyperplane 
0.922 0.994 0.961 

Metrics obtained by averaging the results from the 5-fold cross-

validation. 

 

 

TABLE VII 

BEST PERFORMING MODELS FOR GRAY STUDDED DISH RACK 

Model Parameters Precision Recall F1 

Polynomial 0.842 0.417 0.558 

Radial Basis, Biased 

Hyperplane 
0.829 0.968 0.893 

Metrics obtained by averaging the results from the 5-fold cross-

validation. 

 

 

TABLE V 

AREA UNDER CURVE FLAT SURFACE MODEL COMPARISON 

Model Parameters Area Under Curve 

Polynomial 0.952 
Polynomial, 0.1 trade-off b/w training & margin 0.948 

Polynomial, Biased Hyperplane 0.948 

Radial Basis, Biased Hyperplane 0.954 

Metrics obtained by averaging the results from the 5-fold cross-

validation. 

 

 

 
 

Figure 5.  Comparison of ROC Curves (from Figures 1, 2, 3 and 4) for 

flat surfaces 

 

 



  

The final non-flat surface modeled is the Amazon Box, 

which actually had a wider array of possible models to 

choose from. Only three models stood out and they were the 

polynomial kernel, the radial basis kernel itself, and the 

radial basis kernel with a biased hyperplane. The results of 

precision, recall, and F1 score can be seen in Table VIII. 

 

 
 

The respective ROC Curves for the Amazon Box can be 

seen in Figure 8.  

 

 
 

Figure 8: Comparison of ROC curves for the Amazon box 

 

 After looking at the various models for the various 

surfaces, it became hard to know which surface actually 

performed the best. The area under the curve (AUC) 

benchmark proved to be a good measure with which model 

performed the best. The results of this comparison can be 

seen in Table IX. 

 

 

 

 

 

D. Synthetic Data 

To properly evaluate our data, we obtained synthetic data 

generated from a physics-based model. We converted this 

synthetic data from their TET labeling format to the labeling 

format used by our data. We generated features for this data 

and used 5-fold cross-validation in order to generate the 

SVM models. We used the same models as our dataset. The 

performance of these models can be seen in (Table VI). 

 

 

 
 

The performance of this model is rather surprising, as we 

expected that the synthetic model would give good results 

due to both the dataset size (32000 labels in total, meaning 

that it is being trained by more labels) and the fact that our 

hand-marked placements is more subject to error (due to the 

incomplete nature of the point cloud data and human error). 

The Synthetic model performed so surprisingly poor that it 

was not pursued in any further detail.  

 

E. Model Comparison  

After extensively modeling nine different surfaces using 

the contact and histograms features and comparing them 

through various calculations and measurements it became 

necessary to see which models actually placed objects in 

correct spots. Classification of features is one thing but 

having those features actually identify good placements is 

the true end to end test of our data.  

 In order to accurately test our end to end results, we used 

test_main, a preexisting program developed by Yun Jiang 

and Marcus Lim, which visualized an ideal placement on the 

surface. The first group of surfaces, the flat surfaces, had 

decent classification using the support vector machine and 

also performed well in the placement tests. Figure 9 

demonstrates one example of a predicted good placement.  

 

TABLE IX 

AREA UNDER CURVE FOR NON-FLAT MODELS 

Model Parameters 
Wood 

Rack 

Open 

Box 

Gray 

Rack 

Radial Basis N/A 0.951 N/A 

Biased Hyperplane, Radial 

Basis 
0.963 0.927 0.662 

Polynomial 0.969 0.971 0.812 

Metrics obtained by averaging the results from the 5-fold cross-

validation. 

 

 

TABLE VIII 

BEST PERFORMING MODELS FOR OPEN AMAZON BOX 

Model Parameters Precision Recall F1 

Polynomial 0.820 0.805 0.812 

Radial Basis, Biased 

Hyperplane 
0.797 0.937 0.861 

Metrics obtained by averaging the results from the 5-fold cross-

validation. 

 

 

TABLE VI 

MODELS FOR SYNTHETIC DATA 

Model Parameters Precision Recall F1 

Polynomial 0.580 0.203 0.300 

Polynomial, 0.1 trade-off b/w 

training & margin 
0.248 0.448 0.319 

Polynomial, Biased Hyperplane 0.570 0.379 0.455 

Radial Basis, Biased 

Hyperplane 
0.488 0.426 0.455 

Metrics obtained by averaging the results from the 5-fold cross-

validation. 

 

 

 



  

 
 

Figure 9: Good Placement on Flat Surface (Ground) 

  

 

The non-flat surface models were also tested using the 

same program. The Wooden Slanted Dish Rack performed 

the best overall. There are various explanations for this but 

the main explanation that can explain this difference in 

performance is the skew in the data. The Wooden Slanted 

Dish Rack had a 50/50 split of good and bad placements 

while the Gray Studded Dish Rack and Amazon Box had 

very few good placements. With the random sampling of 

test main the skew caused the program to choose less ideal 

positions. Below you can see an excellent placement in the 

Wooden Slanted Dish Rack in Figure 10 and bad placements 

in both the Gray Studded Dish Rack and the Amazon Box in 

Figures 11 and 12. 

 

 
 

Figure 10: Good placement found for the Wooden Slanted Dish Rack 

 
 

Figure 11: Bad Placement found for the Gray Studded Dish Rack 

 

 
 

Figure 12: Bad Placement found for the Amazon Box 

 

F. Robot Experimentation 

To demonstrate the usefulness of our model in actual 

object placement, we wrote code to move our object to a 

surface and release them at a stable placement determined 

by our model. 

We had the robot grasp an object at a predefined location 

in the same orientation given by its point cloud data. This 

was done so that we would know the initial orientation of 

the object for placement purposes. This is needed due to the 

how the Kinect is mounted on the Adept Arm. The Kinect is 

unable to see what the arm is grasping so there is no 

automated way of discovering this information other than by 

using another Kinect mounted in such a way that it can see 

the object that the gripper is holding. However, this is 

beyond the scope of our project.  

Then, we gave it the locations of our various surfaces on 

which we wanted to place the object. Using our SVM 

model, we would then determine which surface was 

predicted to be the best placement by which one resulted in 

the highest discrimination threshold value, meaning that the 

model predicts that one particular placement is the most 



  

likely to be stable. It then placed the object in the 

appropriate orientation on the favored surface. The surface 

choosing was only done for flat surfaces.  

 

 
 

Figure 13: Adept Arm placing Orange Cone on the Kinect Box 

 

 
 

Figure 14: Adept Arm placing Pink Bee Plate on the Rovio Box 

 

In addition, the placement of a single object and multiple 

objects was done in the Wooden Slanted Dish Rack due to 

its superior performance in the end to end testing. In this 

case it was tested to see if it was possible to place one object 

with a known orientation into the dish rack which was 

successful. It was then tested to place multiple objects into 

the Wood Slanted Dish Rack which was also successful 

after some anticipation of placement location but the model 

was used entirely for orienting the objects.  

 

 
 

Figure 15: Adept Arm placing dishes into Wooden Slanted Dish Rack 

IV. CONCLUSION AND FUTURE WORK 

We have constructed a significant dataset for use in any 

future projects that may require object placements on a 

number of environments. Furthermore, we have generated a 

model that shows relatively strong performance in our 

testing data. We compared our model against synthetic data 

generated by a physics model for comparison. Finally, we 

demonstrated the usefulness of the model through robot 

experimentation where the robot was able to successfully 

place most of the objects that we had given it. 

As data collection took a significant amount of time, 

future projects should be able to save a great deal of time 

and effort and focus more on robot experimentation instead. 

One clear area of future work would be using an externally 

mounted Kinect to automatically determine the orientation at 

which an object is held, eliminating the need for a human 

input in robot experimentation as well as experimentation 

with additional features.  

More future work could be done in improving the poor 

performing non-flat surfaces. This would involve improving 

the skew in the data which would allow for the testing 

program we used to have more samples of good positioning, 

allowing it choose favorable positions and orientations. 

More work could also be done in selecting more features. As 

our data set combined is in the thousands of labels we could 

legitimately include more features in the hope of improving 

model performance.  

Future work would also allow us to do robot experiments 

using all of our surfaces and combining all of the models 

together to find ideal placements for different objects. This 

could prove interesting as hopefully the model could choose 

to place a dish in the dish rack and a barbell on a flat 

surface. In addition to improved modeling it would also be 

useful to further explore planners for the Adept Arm. Better 

planning would allow for easier placement of objects. Our 

experimentation showed good positioning of the objects but 

the arm could use better planning to place the objects in 

those locations.  
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