
Autonomous Generation, Segmentation, and Categorization of Point
Clouds

David Skiff, Computer Science in the College of Engineering, 2012, des259@cornell.edu

Abstract— Microsoft Kinect dynamically provides texture
mapped 3-dimensional point clouds. Combining this with new
Simultaneous Localization and Mapping techniques, fast gen-
eration of detailed, fully textured, 3-dimensional point clouds
of an environment, and the Kinect’s location in it, can be
found on the fly. One application of the this new ability is
to the segmentation and categorization of an environment, and
the generation of a simple floor plan. The projects goal is to
generate a simple, reasonably fast set of tools that segments
simple Point Clouds into seperate objects, assigns them basic
categories (movable and unmovable), and generates a simple
blueprint for the environment. The results can be used for
navigation, or tasks such as moving around and sorting objects
in a room. Another possible use is the detection of doorways. In
the future, more work on the segmentation algorithms would
be desired.

I. INTRODUCTION
The recent introduction of Microsoft’s Kinect has cre-

ated a significant amount of research into non-uniform 3-
dimensional point cloud manipulation and analysis. This
project applies several known robotics methods for both
2-dimensional and 3-dimensional problems to the task of
Simultaneous Localization and Mapping (SLAM), Mesh
Segmentation, and 3-Dimensional Object Classification.

In robotics, its often valuable to be able to dynamically
discover an environment, produce a map of the environment,
and locate objects with-in it. Navigation and Control are two
of the most important aspects of robotics. Having a map
of the environment, the robots location in the environment,
and the location and class of the objects with-in it, provide
the robot with invaluable information for both of the tasks.
Indeed, the first localization and mapping are the focus of
SLAM, an important and heavily researched field of robotics.

As a result, this project seeks to generate a 2-dimensional
blueprint of a room dynamically. Ideal it would contain
immovable objects, as well as walls, and doorways. This
differs Occupancy grid method used by most SLAM projects.
The project seeks to map walls, and specific points where it
cannot walk, but allows for moving of objects.

II. RELATED WORK

There’s a lot of prior work in SLAM. The process of
performing SLAM is usually broken up into five separate
problems: State Estimation, State Update, Landmark Extrac-
tion, Landmark Update, and Data Association. There are
several solutions already available, most notably ones based
on extended Kalman Filters [1] (or EKF-SLAM) and based
on particle filters [1] (or fastSLAM). Both methods provide
a means for estimating the location of the robot based on
transformations in the landmarks after movement. The EKF

solution is by far the most popular. However, with the added
information provided by the Kinect, we can locate landmarks
in a 3-dimensional space accurately, and then use RANSAC
to estimate transformations. This allows us to skip the use
of EKF, since mapping can be effectively performed without
knowing the location or transformation ahead of time. This
is used by RGBD-SLAM [2], and has provided impressive
results with the Kinect. However, the method is in its early
stages, and no paper is available on it, yet. SLAM methods
often are used to generate Occupancy Maps, gradient maps
indicating the perceived cost of traveling over a region. [9]

III. APPROACH

The project is entirely implemented in the Robot Operating
System (ROS), which can be found at www.ros.org. The
project is broken up into seperate steps, and the results from
each are piped between the them (see Fig. 2).

Fig. 1. Data Path for Project

A. RGBD-SLAM

SLAM is usually difficult do to the classic chick or the egg
problem, where you need to the position and transformation
to map, and you need the map in order to locate yourself.
However, by using the method from [2], the mapping is
performed by estimating the transformation using RANdom
SAmple Consensus (RANSAC) [4]. This removes the mutual
requirement, and significantly simplifies the problem. The
solution from [2] involves the use of Speeded Up Rubust
Features (SURF) [3] to generate landmarks which are then
projected into 3-dimensional space. For each frame received
from the kinect, the transformation from the previous states
is estimated using RANSAC. This allows the creation of a
graph connecting camera viewpoints between frames. Lo-
cation is easy to derive, since we have depth information
from the camera. [2] Each point cloud is combined into a
cumulative Point Cloud.

B. Segmentation

In order to achieve all of the goals (identify movable ob-
jects, identify doors, and create a blueprint) we segment the



object into walls and seperate objects. There’s a significant
amount of noise and excessive clustering of pixels, so a
Gaussian Filter is used to remove noise, and a Voxel Grid
is used to down sample the data. While most research for
segmentation has been done for 2-dimensions, there is some
prior work for 3-dimensional, or mesh, segmentation. How-
ever, most of it requires uniform, non-noisy, Point Clouds. As
a result, we use Planar and k-Means Clustering Segmentation
[6]. We assume the floor is a large, flat plan, and that the
walls are large planes perpendicular to the floor. Thus, we
fit planes to the points at the specific orientations using
PCL’s provided parallel plane consensus segmentation which
uses RANSAC [4]. Once the floors and walls have been
removed, k-Means Clustering is used to segment the objects
with Euclidean Distance is used as the distance function.
The result is a set of expected wall, floor, and object Point
Clouds.

C. Categorization

The walls and floors are already categorized for us, so
what remains is to classify the objects as either movable or
immovable. While a number of methods could potentially
be used for this, this project decided to use a Bag of Key-
points approach [7]. First, a suitable feature extractor must
be chosen. We need something that’s scale, position, and
rotation invariant, such that we can merely compare features
any point in an image and calculate distance. While there
are quite a few methods available for 2-dimensional image,
3-dimensional feature extractors are more scarse, NARF was
used by this project. Normal Aligned Radial Feature NARF
(NARF) [8] is a rotation invariant feature extractor. NARF
first extracts interest points, and then generates a feature
descriptor at that point. It does so by:

• calculating a normal aligned range value patch in the
point, which is a small range image with the observer
looking at the point along the normal,

• overlay a star pattern onto this patch, where each beam
corresponds to a value in the nal descriptor, that captures
how much the pixels under the beam change,

• extract a unique orientation from the descriptor,
• and shift the descriptor according to this value to make

it invariant to the rotation.
(from [8]). Now that we have a feature extractor, we simply
create test sets and extract features from them. Identify the
most

D. Map

We know have a collection of wall point clouds, a col-
lection of object point clouds, and a floor and roof point
cloud. In order to generate the blueprint, we project all walls
and immovable objects down to 2-dimensions, and then use
linear regression to fit lines to the clouds. Then, collision
points between the lines are taken as corners. The resulting
map is output as a collection of endpoints for the walls, and
the convex hulls of the projection of each individual object
cloud.

Fig. 2. From [8]. (a) A range image of an example scene with an
armchair in the front. The black cross marks the position of an interest
point. (b): Visualization how the descriptor is calculated. The top shows
a range value patch of the top right corner of the armchair. The actual
descriptor is visualized on the bottom. Each of the 20 cells of the descriptor
corresponds to one of the beams (green) visualized in the patch, with two
of the correspondences marked with arrows. The additional (red) arrow
pointing to the top right shows the extracted dominant orientation. (c): The
descriptor distances to every other point in the scene (the brighter the higher
the value). Note that mainly top right rectangular corners get low values.

IV. RESULTS

RGBD-SLAM is produces incredible results. However,
it’s incredibly buggy, and combined with rviz’s crash sus-
ceptability, long runs were somewhat restricted with on the
fly viewing (or even without). Regardless, full point clouds
of several rooms were generated successfully, and basic
blueprints were successfully generated. However, object clas-
sification failed to perform anywhere near accurately. This
is likely due to too small of training set being generated.
Excluding the objects, the blueprints themselves were qual-
itatively good.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

RGBD-SLAM provides an excellent, albeit noisy and non-
uniform, Point Cloud, which can be suitably filtered and seg-
mented to generate basic blueprints of a room. While object
classification isn’t working correctly, yet. The generation of
a larger training set would likely elleviate this issue.

B. Future Works

Generate a larger training set for the object classification.
At the time of writing this, the object classification fails to
perform well, and is likely due to limited training data.

The current method of object segmentation, k-Means,
allows for simple non-contiguous segmentation. However, if
objects touch, or overlap, then the k-Means identifies the the
seperate elements as a single object. There are alternative
Mesh Segmentation algorithms available, like that suggested
by [5], but are significantly more arduous to implement.



It was an initial goal of this project to identify doorways
from the resulting blueprint. However, time was too much
of a constraint. However, since we’d only be looking at the
wall blueprint, We can search around the endpoints of lines,
identify gaps, and match them against the size restrictions
for a door.

REFERENCES

[1] Durrant-Whyte, H., and T. Bailey. ”Simultaneous Localization and
Mapping: Part I.” IEEE Robotics & Automation Magazine 13.2 (2006):
99-110. Print.

[2] Ruchti, Philipp, Felix Endres, Juergen Hess, Nikolas
Engelhard, Juergen Sturm, Wolfram Burgard, and Daniel
Kuhner. ”RGBD-6D-SLAM.” ROS Wiki. Web. 03 Apr. 2011.
¡http://www.ros.org/wiki/openni/ Contests/ROS 3D/RGBD-6D-
SLAM¿

[3] Bay, H., A. Ess, T. Tuytelaars, and L. Vangool. ”Speeded-Up Robust
Features (SURF).” Computer Vision and Image Understanding 110.3
(2008): 346-59. Print.

[4] Bolles, Robert C., and Martin A. Fischler. ”Random Sample Con-
sensus: a Paradigm for Model Fitting with Applications to Image
Analysis and Automated Cartography.” Communications of the ACM
24.6 (1981). Print.

[5] Jagannathan, Anupama. ”Segmentation and Recognition of 3D Point
Clouds within Graph-theoretic and Thermodynamic Frameworks.”
Thesis. Northeastern University, 2005. Print.

[6] Lloyd, S. ”Least Squares Quantization in PCM.” IEEE Transactions
on Information Theory 28.2 (1982): 129-37. Print.

[7] Csurka, Gabriella, Christopher Dance, Lixin Fan, Jutta Willamowski,
and Cdric Bray. Visual Categorization with Bags of Keypoints. Xerox
Research Centre Europe. Print.

[8] Bastion Steder,Radu Bogdan Rusu, Kurt Konolige, Wolfram Burgard
”NARF: 3D Range Image Features for Object Recognition” (2010)

[9] Mark Whitty, Stephen Cossell, Kim Son Dang, Jose Guivant and
Jayantha Katupitiya ”Autonomous Navigation using a Real-Time 3D
Point Cloud”


