
CS 6758: Finding and Classifying Object Interaction Using Stereoscopic Data 

Shahrukh Mallick, CS M.Eng 2011, skm47@cornell.edu 

Andrew Spielberg, CS M.Eng 2011, aes89@cornell.edu 

Abstract 

Autonomous understanding of the kinematic structure and interaction of objects in an 

agent’s environment has important applications in the fields of robotics and 

computational physics. In this paper, we present a novel means for determining the 

kinematic model of objects (rigid and non-rigid) and how they interact with one another 

in an environment using stereoscopic data of the agent’s world. Our algorithm consists 

of two phases. The first is an unsupervised link detection phase, wherein we determine 

the set of links that compose a kinematic body. Here, we employ 2D tracking algorithms 

coupled with 3D spectral clustering methods. The second phase is to determine where 

and how these links interact with one another. The locations are determined using 

assumptions about the locality of the links. We employ a soft max regression on our 

features, which were determined heuristically to discern the interaction types. 

Clustering was correct on data in 22 out of 36 cases, yielding 61.1% accuracy. 

1 Introduc t ion  

The task of identifying objects and understanding how to utilize these objects is a growing area of 

interest in the fields of machine learning and robotics. Specifically understanding the kinematic model of 

an object will illuminate the functionality and uses of the object (e.g. a robot can learn how scissors 

move without any prior knowledge about the structure of the scissors, and can use this knowledge to 

cut paper). This extra layer of info will provide more valuable information to a computer. This is a very 

simple idea, and this type of learning can be applied to a wide scope of tasks and objectives. 

Several other studies have addressed this problem.  Oliver et al [1] suggest a method for tracking motion 

of linked bodies over time and determining the planar kinematic structure. While it is generalizable to n-

linked objects, it has two main shortcomings. One, it requires that the object’s motion be projectable 

onto a 2D plane (and manipulated on the plane), and two, it only can identify rotational motion 

(revolute). J. Sturm [2] used artificial markers and learned the articulation models of objects in 3D, 

focusing on rigid bodies and classifying the model into rigid transformations or into a joint model 

consisting of a prismatic, rotational, or an LLE/GP model. Sturm expanded on this work [3] using 

stereovision to learn the articulation of models without any markers. However, this implementation is 

limited in that it only addresses objects that can be fit by rectangles.  

In this paper, we will expand on the previously mentioned works by identifying where objects interact 

with each other, and classify them into one of several different types. We will address deformable 

objects as well.  We will use 3D stereographic data to develop the methods for determining the 

kinematic structure of the objects. In addition, no markers will be used to aid in tracking, as this is 
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important when considering applications to the real world. Our goal is to develop an algorithm that is 

reasonably fast and highly accurate.  

2 Dataset  and Method ology  

In developing our dataset, we sought to provide data on a variety of interactions and movements in the 

objects and environments, including prismatic, revolute, screw, rigid contact, 2D planar constraint, 1-

manifold deformable, 2-manifold deformable, and separable. Most items we considered contained one 

core interaction, but most cases contained several different types of interactions. Table 1 below 

provides a summary of the interaction types, a brief description of it, and the number of videos 

recorded of this type. 

Interaction Type Description # of Videos 

Prismatic Two links related by a prismatic joint 4 

Rotational (Revolute) Two links related by a revolute joint 5 

Rotational (Screw) Two links related by a screw joint 2 

Rigid Constraint Links constrained by a point of contact (i.e. hangar on hook) 6 

2D-Planar Constraint An item constrained to some plane (i.e. item in card sleeve) 2 

1-Manifold 1D deformable object (i.e. wire) 2 

2-Manifold 2D deformable object (i.e. cloth) 8 

Separable No constraint between objects (i.e. item on surface) 7 

Table 1: Overview of data set: interaction type, description of type, and # of videos for each item shown 

For a very detailed view of the data set, a table has been provided in the appendix that specifies the 

contents of each video. 

Recording of data was done with the Microsoft Kinect, which captures a 3D point cloud of the object and 

provides a corresponding image. The point cloud data contains the x, y, and z coordinates of points on 

non-background surfaces that the camera was able to see, and its correspondence with the 2D image. 

We simulated movement through stop motion, since the Kinect cannot collect store data in real time. 

Our stop motion “videos” per item were kept to a standard of approximately 15 frames. 

3 A lgor i thm 

Here we outline the algorithms for detecting areas of interaction and classifying them into types, both of 

which build upon a link segmentation algorithm which we implement. We first discuss the link 

segmentation algorithm before discussing the detection and classification algorithms. 

3 . 1  L i n k  S e g m e ntat i o n  

In order to determine any information of the kinematic structure of a given system, it is first imperative 

that we determine what “links” the objects possess, that is, their kinematic structure. To do this, we 

require three steps – image segmentation, feature generation, and feature clustering. The former two 

happen during each time step, but the clustering only occurs after the algorithm has observed the entire 

video. We now consider each of these steps in turn. 



3 . 1 . 1  I m a ge  S e g m e nt at i o n  

The principal technique used for the feature generation step is feature tracking, which is very sensitive 

to abrupt variation in color intensities. We define the foreground as the structure we wish to learn 

about, and everything else as the background. Image segmentation of the scene was necessary for 

reducing the amount of noise in the system. Here, we define noise to be details of the structure that 

provide no information about system structure or background imagery. For instance, dirt on the camera 

lens, polka dots on a texture, or hair on a human forearm, none of which provide any information about 

the structure of the object, can add abrupt changes in color intensity to the system, which in turn can 

provide misleading information to the tracking algorithms. Additionally, background imagery, such as a 

shadow, which is not part of the object, can waste time and memory by causing our algorithms to track 

irrelevant parts of the image, or perhaps even mistake a point as moving from the foreground structure 

to the background. Image segmentation can eliminate localized but abrupt, noisy details, and further 

weaken the already gentle background gradients, thus reducing these sources of noise. 

We implemented a mean-shift segmentation, as it was a relatively fast method which removed most of 

the noise in our videos; we used the openCV [4] implementation with a spatial radius of 20 pixels and a 

color radius of 5 in standard RGB color space.  

However, there is a draw back with the use of image segmentation. Because we were using distinct 

features to track our corners (discussed in 3.1.2), image segmentation would smooth out these features 

and make the tracking not perform well. For this reason, we opted to not perform segmentation as it 

was more critical to assure the tracking was working correctly. This would insure better clustering later 

on. There likely is a happy medium that can be reached (very little segmenting to get rid of noise 

without losing all sharp detail in object). However, this study did not delve into this area. 

3 . 1 . 2  Fe at u r e  G e n e rat i o n  

The algorithm moves to the step of cluster feature generation. First, features of the object must be 

tracked from frame to frame, which we do by first generating “nodes” on the image corresponding to 

points on the object to track. This sub-step only occurs at the first frame. The points we choose to track 

occur at “corners,” that is, where there are large color intensity gradients in orthogonal directions. For 

this, we employed the Shi-Tomasi algorithm. 

After selecting the nodes to track, the Lucas-Kanade algorithm was used to track the location of the 

nodes from one frame to another. Both the Lucas-Kanade algorithm and the Shi-Tomasi algorithm 

operate on the 2-D image. Figure 1 below shows the image with the features that are being tracked.  



 

Figure 1: Bike Pump data with feature tracking. Dots represent the corners that are being tracked. 

Once we have the nodes tracked, we must develop a feature vector for each node. The goal is to 

develop a feature vector for each node, describing its movement with respect to the other nodes. From 

this, we hope to eventually cluster the nodes by the links to which they belong. 

We make a key assumption about nodes in order to aid with designing a suitable feature vector: if two 

nodes occupy the same link, then the 3-D distance between the two nodes doesn’t change throughout 

the course of a video. We can weaken this assumption by saying that with noise, the distance between 

the two nodes doesn’t change very much. 

From here, the feature vector seems natural: we record the relative change in distance between each 

pair of nodes (including the reflexive pair) over all adjacent time frames. In total, this gives feature 

vectors of length , where  is number of nodes and  is number of frames. This size is fine for many 

cases, but could cause memory problems for large  and .  

It’s worth noting here that Oliver [1] uses a different methodology to determine the joint structure. 

Oliver measures the changes in the distance between nodes over time as well, but uses this data to 

generate a graph. Each node is represented by a vertex, and two vertices are connected by an edge if 

the change in the distance between their respective nodes is 0 for the entire sequence. From this 

constructed graph, a min-cut algorithm [5] is used to segment the graph into links. For us it was unclear 

how to decide how many times to run the min-cut algorithm here. Furthermore, we were worried about 

this method’s sensitivity to recording noise. For example, what if it appears to the Lucas-Kanade 

algorithm that nodes on the same rigid are moving some very small distance? For this, it would be hard 

to generate the graph since we’d need to know an additional parameter, some tolerance on which we’d 

need to pass before we no longer consider two nodes’ respective distances stationary. For these 

reasons, we opted to use clustering algorithms. 

3 . 1 . 3  Fe at u r e  C l u ste r i n g  

Using our nodes and generated features, the last step is to cluster the nodes. We use a spectral 

clustering algorithm based off the work of Ng et al [6]. In particular, we use the Spectral Library MATLAB 

implementation [7] [8] and use Ng spectral clustering in conjunction with Ward hierarchical clustering as 



a mapping method. Figure 2 below shows the bike pump data after it has been clustered. As seen, the 

pump handle is clustered together. 

 

Figure 2: Clustering of bike pump data. Pump handle is clustered together. Algorithm cannot distinguish 

rest of image since it is motionless and groups it at random 

3 . 2  L o c at i o n  o f  I nte ra c t i o n  

We could consider each pair of possible interactions, but there are ways to eliminate some interactions 

based on some heuristic features. The reason for doing this is obvious, which is to simplify the 

classification process.  We aim to prune out potential interactions which appear unlikely.  We do this by 

removing potential interactions which are very far away. This distance was determined to be a value 

proportional to the standard deviation of the size of the cluster. However, there is no guarantee for this 

pruning to be accurate. Therefore it is better to be conservative here, and not prune too much, because 

we can classify pairs of clusters as “interactionless” later. 

We label the location of interaction as the midpoint between the two nearest nodes. 

3 . 3  C l a s s i f i c at i o n  o f  I nte ra c t i o n  

We naturally generate several features to track, which we partially base on existing literature.  After the 

links have been segmented, we generate centroid of the points which we are tracking.  We mainly use 

the motion of this centroid in order to track features. 

In particular, for each potential interaction (as calculated earlier) between centroids, we record vectors 

corresponding to its frame-by-frame motion in each of the three Cartesian directions.  We have four 

vectors, and , where the last vector just represents the time lapse between frames, which we 

keep constant.  The  and  vectors are calculated by subtracting the motion of one of centroid from 

the other.  From these vectors of data, we run an isomap algorithm, attempting to embed the data 

either into 1 or 2 dimensions, and keep track of the one with the lower residual variance. 



The motivation for using isomaps is that constraints often force the motion down to lower dimensional 

surfaces and contours.  For instance, consider a revolute joint.  The centroid will sweep out motion that 

lies on some portion of a circle, which is a 1-dimensional object.  Thus, the isomap will determine that 

this is clearly a 1-dimensional embedding.  The same will be true for things like tracked motion, and 

prismatic joints, which also sweep out 1-dimensional motion.  Meanwhile, the motion that sweeps out 

from something like a ball-and-socket joint will lie on a 2-dimensional spherical surface.  We postulate 

that deformable objects, which will be represented by many closely coupled small clusters, will lead to 

non-correlated motion and thus will not permit a good lower-dimensional embedding. 

Previous work by Sturm [2, 3] used 6 degrees of freedom of the object; linear and rotational motions 

were both tracked.  For now, since we are using centroids, which are points, rotation is untrackable; 

however, we will consider ways to use our entire set of tracked points to approximate rotational motion 

in the later stages of this project. 

After we’re able to identify the correct embedding, we extract features from our isomap.  In particular, 

we extract the average curvature of the motion and the variance in the curvature.  We also measure the 

covariance matrix of the motion in the original feature space, and pass that along as one of our features.  

We also include the residual variance of our embedding as a feature. 

Another two features we use is the number of tracked elements in neighboring clusters, and the 

standard deviation of the distances within the clusters, averaged between the two clusters and over all 

time steps.  The hypothesis here is that rigid bodies will have large numbers of tracked elements spread 

out over large distances, while deformable objects are approximated by lots of little clusters that are 

tightly packed.   

4 Results  and Disc uss ion  

4 . 1  C l u ste r i n g  A c c u ra c y  

Generating the link structure was not as accurate as originally hoped. Figure 3 below shows the result of 

clustering on the backpack data. As expected, no real links were found together because the object was 

deformable and had no real structure to the movement. Thus, it led to a very poor guess as to the areas 

of interaction. In essence, it ended up roughly being an average of all the points in the image. Overall, 

this algorithm was able to cluster 22 out of 36 images correctly, yielding 61.1% accuracy. However, this 

can be improved. 

Since there’s no way to distinguish between the background and pieces of an object that are not moving 

(i.e. the base of a pump as the handle is moving), we attempted to manually define a region of interest 

for our image. Essentially, we’d focus on clustering the images into a predefined area in the image, which 

was hard coded in by us. Figure 4 shows this result after running our clustering and interaction detection 

on this restricted data. As one can see, the results are much better than what is seen in Figure 2. The 

base is strictly its own cluster and the handle is its own cluster, and the rest of the image is ignored. 

However, this approach takes too much human involvement, and thus, was not pursued for the entire 



dataset. It is here to illustrate the algorithm can work more effectively with more restrictive settings and 

human intervention. 

 

Figure 3: Clustering of the nodes denoted by the colored dotes and lines on backpack data. The large 

white circles represent the location of interaction 

 

Figure 4: This is the clustering after the region of interest restrictions have been applied to bike pump 

data 

4 . 2  I nte ra c t i o n  C l a s s i f i c at i o n  

Unfortunately, there was no enough time to complete this step. The idea was to run soft max regression 

on features described in section 3.3. However, the training step for even one iteration was taking an 

indefinite amount of time. Hence, performing LOOCV on the data set would have taken an unknown 

amount of time. No alternative was able to be performed with the time left. 

4 Future  Work  

There could be many things to help improve this algorithm. As one can see, defining a region of interest 

seemed to yield the best results for clustering and interaction detection. However, that takes a lot of 



human involvement. Developing a way to automatically define a region of interest based on movement 

in image could be one way to automate this problem.  

Though we opted not to use image segmentation, applying it might be beneficial in future cases. It is 

worthwhile exploring applying very minimal segmentation to find a good medium between segmenting 

without losing details of the object that needs to be tracked. Doing so would remove the noise of the 

image and prevent the tracking algorithm to needlessly track or be erroneous to small details. 

Lastly, finding an alternative for interaction classification is very important. An essential goal with many 

projects involving robotics is the ability to perform the algorithm online. Soft max was not the right 

approach as the training was taking too long. Several fixes could be to prune our training set and 

features more to reduce cost of training. Alternative would be to find another classification algorithm, 

such as SVM-Multi [9].  

5 Conc lusion  

We have presented a new method for both detecting and classifying object interactions using 

stereoscopic data. The use of spectral clustering, as a means of determining the segments and joints, 

allowed for a completely unsupervised method of using this data to build a link structure of the object in 

its environment. However, the results were not nearly as accurate as hoped, and ways of improving this 

have been discussed in section 4. We believe that be finding a way to automate this region of interest 

will prune out much of the data by throwing out unnecessary information. Finding a faster classification 

scheme will also allow this algorithm to run online with the intended goal to be run without any human 

intervention. This combined with some very minimal segmentation can lead to a very viable method for 

quickly understanding the interactions of an object in an environment. 
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APPENDIX 

Detailed listing of data recorded. Items listed in italics have not been recorded yet. 

Items Description Interaction 

Calipers Analog calipers opening and closing Prismatic 

Bike Pump A small bicycle pump, pumping action Prismatic 

Umbrella Closed umbrella moving up and down Prismatic 

Helicopter 4 propeller helicopter, spinning propellers Rotational (Revolute) 

Book Book opening from a closer position Rotational (Revolute) 

D-Link Wireless router with antenna, antenna being rotated Rotational (Revolute) 

Pliers A pair of pliers opening and closing Rotational (Revolute) 

Bottle Caps Bottle cap being spun open and closed Rotational (Screw) 

Hangar Hangar being removed from a hooked position Rigid Constraint 

Rope Hook Rope being pulled by hooked contraption Rigid Constraint, 1-Manifold 

Mouse Cord Cord being manipulated randomly 1-Manifold 

Bunjie cord Cord being stretched 1-Manifold 

Rope Wire Wire being bent around 1-Manifold 

Jacket Jacket being zipped up and down 2-Manifold 

Backpack Backpack being zipped open to closed 2-Manifold 

Magazine Magazine page being folded and distorted 2-Manifold 

Paper Towel Paper towel being distorted 2-Manifold 

Card Sleeve Dot object moving around in a card sleeve 2D-Planar Constraint 

Cone Cone moving around on surface Separable 

Bottle Bottle moving around on surface Separable 

Object 
Assortment Multiple objects moving around on surface Separable 

Mouse Mouse moving around on surface Separable 

Seal and Gnome Seal and gnome objects moving on surface Separable 

 


