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Abstract—This paper presents a general approach for esti-
mating pose information from a single depth image given an
arbitrary kinematic structure without prior training. For an
arbitrary skeleton and depth image, an evolutionary algorithm
is used to find the optimal skeletal configuration to explain the
observed image. Results show that this approach can correctly
pose a 23 degree-of-freedom model from a single depth image,
even in cases of significant self-occlusion.

I. INTRODUCTION

A fundamental issue in a multitude of robotic application

is the automated, three-dimensional pose estimation of an

articulated object. While recent technological advances have

made capturing depth images convenient and affordable,

extracting pose information from these images remains a

challenge – even when the kinematic structure of the target

is provided.

Previous approaches often rely domain-specific knowledge

and extensive training, thus providing little generality to

arbitrary skeletons where little or no training data exists.

These approaches do not use the kinematic skeleton directly,

but instead transform the kinematic pose information to an

intermediate representation for comparison, such as human

body part recognition [1] or referencing a known an ex-

ternal hull [2]. Despite the accuracy and success of these

algorithms, they are unable to generalize beyond the narrow

scope imposed by the fundamental assumptions that arise

from these intermediate representations.

A technique that abstracts skeletal information and extracts

poses from arbitrary depth images would have a profound

affect the design and training of complex, articular robotic

systems. For example, the general definition of a head, torso

and four limbs readily describes a wide range of kinematic

skeletons, from humanoid structures to quadrupedal forms.

The ability to extract a pose given an arbitrary skeleton and

depth image pair without any prior assumptions will provide

a key analysis tool for robots.

This paper presents a novel approach to estimating poses

of an arbitrary kinematic skeleton from a single depth image

without prior training. The pose estimation is defined as a

model-based estimation problem and an evolutionary algo-

rithm is applied to find the optimal pose. Rather than using

a priori beliefs or pre-trained models, this algorithm extracts

the most likely configuration based solely on the kinematic

structure to explain the observed depth image (Fig. 1).
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Fig. 1. Inferring pose information from a single depth image and an
arbitrary skeleton.

II. RELATED WORK

The vast majority of pose estimation research focused

on specifically the human kinematic skeleton. Recent sur-

veys [3], [4] describe two primary directions: pose assembly

via probabilistic detection of body parts and example-based

methods. Pose assembly attempts to reconstruct the pose

by first identifying body parts using pairwise constraints

including aspect ratio, scale, appearance, orientation and

connectivity. In contrast, example-based methods compare

the observed image with a database of samples. A primary

limitation of these techniques is their reliance on domain-

specific information regarding human kinematics. For pose

assembly, direct assumptions are made regarding the fea-

sibility of the constraints while example-based methods

extrapolate information from the existing database.

Shotton et al. described a particularly successful approach

to human pose recognition that builds a probabilistic decision

tree to first find an approximate pose of body parts, followed

by a local optimization step [1]. This approach forms the

basis for a real-time implementation on commercial hard-

ware. While this technique is fast and reliable, it relies

on significant training exclusive to the humanoid skeletal

structure: 24 hours on 1000 cores of training on 1 million

randomized poses.

In comparison, Gall et al. used motion capture with

markerless camera systems to find poses of complex models

generated from animals and non-rigid garments [2]. How-



Fig. 2. a) The acyclic graph representation of the skeleton and b) the
corresponding visual depiction. In addition to the line segments, directed
cones are added to the visual depiction for clarity. Joint 4 is highlighted to
show the joint angle and length parameters.

ever, this approach required laser scans of the initial subject

to provide a definitive mapping between the skeleton and

the point cloud distribution. Expert knowledge was used

to define how the external hull moved with respect to the

underlying skeleton.

In an alternative approach, Katz et al. inferred relational

representations of articulated objects by tracking visual fea-

tures [5]. While this work does not focus on pose estima-

tion directly, it presents a framework to extract kinematic

information from an unknown object using computer vision.

However, it is limited to planar objects and requires interac-

tions to infer the underlying structure.

Finally, teaching by demonstration has been shown to be

an efficient and natural method to transfer knowledge to

robots. Riley et al. used imitation to achieve human-like

behaviour in highly-complex, humanoid robots [6] while

Kober at al. explored how to use demonstrations to learn

motor primitives and tackle complex dynamics problem via

reinforcement learning [7]. Although, illustrate the potential

uses for automated pose estimation in a robotics setting,

current teaching by demonstration implementations relies on

predefined transformations between the teacher and student

and there have been no attempts to generalize to arbitrary

teachers.

III. POSE ESTIMATION VIA EVOLUTIONARY

COMPUTATION

This section begins with a formal description of the

kinematic models and a definition of the pose estimation

problem. A evolutionary computation framework is then

presented, followed by a discussion of two techniques to aid

in scalable performance: coevolution of rank predictors and

age-fitness Pareto optimization.

A. Skeleton representation

Skeletons are represented as a collection of parametrized

joints in an acyclic graph structure (Fig. 2). The root node

represents a frame of reference that describes the position of

the origin, orientation and scale – this corresponds to seven

degrees-of-freedom (DOF) for a three-dimensional space.

The position and orientation are unbounded while the scale

is loosely constrained, allowing to sweep several orders of

magnitude.

Every subsequent child represents a joint, which is ab-

stracted mathematically as a line segment of zero thickness.

Each joint is described by two free parameters: joint length

and joint angle. Both parameters are constrained between two

predefined bounds, and linear interpolation or SLERP [8]

is used to interpolate between the bounds, accordingly. By

setting identical bounds for the upper and lower limits,

joint parameters can be effectively removed. For example,

although each joint has only one degree of rotation, complex

joints such as ball and sockets can be obtained by cascading

multiple zero length joints.

B. Pose estimation

The pose estimation problem is defined in general opti-

mization framework:

s∗ = argmin
s

E(s(θ),p) (1)

where s(θ) is skeleton model with parameters θ, p is the

collection of points from the observed depth image and E(·)
is an objective function to measure the error between the

model and the data. Thus, pose estimation is fundamentally

an attempt to find a skeleton configuration that best matches

the observed data.

However, determining a suitable metric of fit for an

arbitrary skeleton model and point cloud data pair is a

non-trivial task. Previous work in pose estimation relied on

known geometric information of the skeleton model. The

relationship between the skeleton and expected external hull

is defined a priori, and the point cloud is compared to the

existing hull. While this approach allows for accurate results

and a simple error metric, its reliance on known external

hulls makes it suitable for arbitrary skeletons.

Consequently, we present an objective function to measure

the error between the an arbitrary skeleton and a point cloud.

This metric is designed to be as general as possible and it

only requires that the kinematic structure can be represented

as a series of line segments. The objective function is defined

as follows:

E(s(θ),p) =
N
∑

n=0

log

(

1 +
||p∗ − pn||

2

σ2

)

(2)

where σ2 is the variance in the positions of the point cloud

data and p∗ is the the closest point on the skeleton, which

is defined as a series of nested arguments. Since each joint

is represented as a line segment, any point on that joint j is

represented by interpolating between the two end points pj,i
and pj,f :

pj = λpj,i + (1− λ)pj,f (3)

where λ ∈ [0, 1] is a interpolation parameter. For a given

joint, the closest point to the data is then readily defined as:

p∗j = argmin
pj

||pn − pj ||
2

(4)



Fig. 3. A visualization of the error metric evaluated on a single point cloud
datum. The distance between the point cloud datum and the nearest point
on the joint segment is computed for each joint in the skeleton, indicated
by the dashed lines. Of these distances, the shortest length (highlighted) is
used for the error calculation (Eq. 2).

Finally, the closest point on the skeleton is defined by

iterating across all of the joint segments in the structure:

p∗ = argmin
p∗

j
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∣

∣
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2

(5)

This piecewise definition is illustrated in Fig. 3. The objective

error is computed using a logarithmic error since it selects

for the conditional mean and, thus, is more robust to noise

than selecting for the conditional mean or median for squared

or absolute error, respectively.

An essential feature of this objective function is its data-

centric, as opposed to model-centric, definition. The objec-

tive function only increases the error for points that are not

well explained by the model. However, it is important to note

that the error is defined only by the closest joints, which are

in turn determined relative to the data. Thus, if a joint is

not associated with any data points, it is able to move freely

without any affect on the objective error.

The major benefit of this data-centric definition is its

ability to deal with partial occlusion in an elegant manner.

For single depth images of articulate robots, self-occlusion

is often a crippling issue for pose estimation. By avoiding

a model-centric error, there is no inherent penalty for po-

sitioning occluded joints where no data exists. For partial

occlusions, this approach can often lead to the good models

by positioning and obstructing a single joint so that the data

points are explained by the remainder of joints.

While the objective function had advantageous geomet-

ric properties, it has many undesirable properties from an

machine learning or optimization perspective. The function

is not convex and is densely populated with local optima.

Furthermore, the large number of nested arguments to de-

termine the closest point can result in sharp discontinuities

in the parameter space of the skeleton. As a result, an

evolutionary algorithms is the preferred approach for this

difficult optimization problem.

Fig. 4. A visualization of the a) mutation and b) crossover operators. In
this example, mutation increased the length of the red joint and changed
the joint angle of the blue joint. For crossover, the root was selected as the
crossover point and the joint chains were swapped accordingly to produce
offspring.

C. Evolutionary algorithm

An evolutionary algorithm (EA) is proposed to determine

the optimal pose estimation parameters. EAs are a stochastic,

population-based, heuristic algorithms that iteratively selects

and combines solutions to produce increasingly better mod-

els. Traditionally, EAs are framed as to maximize the fitness

of an individual rather than minimize an error metric, which

is often achieved by simply negating the sign of the metric.

In the pose estimation, the genotype, or solution encoding,

of an individual is the underlying parameters of a given

kinematic acyclic graph described in Section III-A.The pop-

ulation is initialized with a collection of randomly generated

individuals. For each individual, the root node position is

initialized on an existing point in the depth image, selected

from a uniform distribution, while the orientation is obtained

via four independent samples from a Gaussian distribution

followed by normalization to a unit quaternion. For the

bounded parameters of scale, joint length and joint angle,

the interpolation parameter is sampled from 0 to 1 with a

uniform distribution.

Th acyclic graph representation is very amenable to

the evolutionary processes of mutation and recombination.

Stochastic point mutations are applied to each of the param-

eters in the graph in a similar method to the initialization

protocol, but localized to individual nodes (Fig. 4.a). For

recombination, a random crossover point is selected for

the existing parent pair, and the offspring are produced by

swapping subgraphs at the crossover point (Fig. 4.b).

The phenotype, or output behaviour, of an individual is

the pose of the kinematic model. The phenotype of each

individual is then used to determine its fitness, or how well

it explains the data, according to Eq. 2.



An evolutionary approach was the preferred method for

this pose estimation problem as it provides numerous bene-

fits. First, EAs have been successfully applied to non-linear,

non-convex optimization problems with deceiving fitness

landscapes. Next, the population-based dynamics in EAs

allow it to search large and high-dimensional search spaces

in an efficient manner. Finally, EAs are best suited when

the genotype representation allows for local optimization.

For pose estimation, two skeletons might optimize different

subgraphs and joint chains, and by recombination, their

offspring can contain each superior subgraph to resulting in

a significantly better model than either parent.

However, due to the complexity of the pose estimation

problem, additional modifications to the EA were required

to provide scalable performance. A competitive coevolution

algorithm using rank predictors is applied to enhance the

effective computation while, age-fitness Pareto optimization

was used as the selection strategy to maximizing perfor-

mance while ensuring diversity.

D. Competitive coevolution using rank predictors

A common criticism of evolutionary algorithms and a

prohibitive limitation in practice stems from the compu-

tationally heavy demands of these algorithms. Often, the

primary culprit in the computational requirements arises from

calculating fitnesses. In pose estimation, determining the

fitness of a single individual requires repeatedly evaluating a

local metric. A single depth image can consist of thousands

of points and, since most points are nearly identical to

its neighbour, computing the fitness of nearby points adds

limited information in terms of evolutionary progress but

nonetheless requires significant computational resources.

Rather than using the entire large data set, a coarser

and lightweight approximation is substituted to alleviate

the computational requirements by competitively coevolving

predictors. Instead of using the complete depth image, the

fitness is measured only on a dynamic subset of the data.

The members of this subset, called predictors, are coevolved

simultaneously based on the solution population, allowing

for evolutionary progress through direct competition. The

key to this coevolution technique relies on the systematic

method of evolving predictors – predictors are rewarded

based on their ability to rank solutions, rather than using

fitness measurements directly [9].

In this work, we show that depth images consisting of tens

of thousands of points can be can be effectively replaced

by a dynamic selection of a hundred points. Since a single

fitness computation consists of nested iterations, decreasing

the number of evaluated points by a few orders of magnitude

results in drastic performance benefits. Effectively, rank pre-

dictors allow more generations to be evaluated for the same

computational effort, providing greater exploration of the

search space. In addition to the reduced computational load,

rank predictors also provide indirect performance benefits by

focusing the search to the areas of greatest interest.

E. Age-fitness Pareto optimization

A common issue for machine learning algorithms for

problems with numerous local optima is that the algorithm

often stagnates on a local optima and solutions stop im-

proving. Despite being a population-based algorithm, the

entire EA population is capable of prematurely converging

on a local optima, failing to make any substantial progress

despite expending additional computational effort. This issue

is particularly daunting for pose estimation, where a large

number of local optima exist. By the nature of the acyclic

graph, parameters near the root have a greater affect on the

final pose, and thus root initialization with bad conditions

almost surely leads to suboptimal solutions.

A popular remedy for dealing with premature convergence

is to perform multiple evolutionary searches via multiple

times. However, due to the stochastic nature of the algo-

rithm, it is difficult to know when a restart is required.

Furthermore, even if the best individuals no longer improve,

the remainder of the population may still contain relevant

genotypic snippets for future generations and removing the

entire population may be computationally inefficient.

One of the best performing heuristics to deal with pre-

mature convergence is the application of genotypic age – a

measure of how long genotypic material has existed in the

population. For every generation, a new random individual

is inserted into the population and for every generation an

individual exists, its age is incremented. During crossover,

an offspring’s age is inherited by the maximum age of its

parents. The primary role of age is its affect on selection;

individuals are selected for the next generation according

to a multi-object Pareto front optimization that ensures an

individual cannot be removed if it has the best fitness for a

given age [10]/

The age-fitness Pareto optimization maintenance of an

effective balance of diversity and performance. Individuals

that no longer show improvement are susceptible to being

replaced, while young individuals are shielded from being

unfairly dominated by individuals who had a more time to

explore the search space.

IV. EXPERIMENTAL SETUP

A data set of an articulated robot was captured using a

Kinect camera’s depth sensor [11]. The robot consists of

four legs, each with two rotational degrees-of-freedom. The

data set consists of four distinct poses, each with ten images

across the complete range of inclination angles, totalling to

forty single depth images. The variation in inclination angles

resulted in numerous of images with self-occlusion. Each

image was pre-processed with background subtraction and

the images contained between 13,000 and 24,000 points.

Note that the evolutionary algorithm inferred the images

independently and no information is transferred between

runs.

The target kinematic skeleton has eight limbs of unknown

length and joint angles, resulting in a 23 DOF model. Note

that the size, orientation and position of the model is part of

the search problem and no calibration or prior distribution



Fig. 5. Selected examples of estimated poses for various inclination angles.

was required. Furthermore, there were no geometric con-

straints on the limbs, such as enforcing symmetry. Although

the kinematic skeleton and robot has the same fundamental

structure for this experiment, the evolutionary approach does

not require such restrictions and can be readily applied to

non-isomorphic skeleton/depth-image pairs.

The evolutionary search had 256 individuals with a muta-

tion probability of 1% and a crossover probability of 50%.

There were 16 predictors, each as a subset of 128 points

from the depth image. The trainer population consisted of

8 individuals and was updated every 100 generations. In

addition to the standard crossover and mutation operators,

a greedy hill-climbing subalgorithm was used to tweak to

produce minute changes in the model parameters as mutation

produced large and unreliable changes.

The evolutionary algorithm was terminated after 2000

generations, which required approximately 5 minutes of

computational effort per image on a single core of a 2.2GHz

Intel processor. The termination condition was chosen arbi-

trarily as a conservative estimate of the computational effort

required to reach convergence.

V. RESULTS

The EA approach to pose estimation was applied to the

data set captured from the eight-jointed robot. Of the 40

single depth images, the EA is able to identify 7.1 ± .9 of

the eight limbs or, equivalently, achieve an 89% accuracy

on limb identification. However, when accounting for the

number of visible limbs, the EA is able to achieve a 1.08%
accuracy, indicating that can reliably able to find the original

pose of the robot, even with significant self-occlusion. Fig. 5

shows a collection of inferred poses across a range of

inclination angles. As the camera was brought closer to the

horizon, several joints became entirely occluded (Fig. 5.b,c).

The primary failure mode occurred when an end of the

skeleton chain was occluded, resulting in a degenerate model

(Fig. 5.d). In this case, there is not enough information to

reconstruct the upper right joint and the algorithm opted to

effectively collapse that joint chain into a single limb.

Informally, while the EA algorithm is effective at de-

termining qualitative properties of the pose information,

it is less precise for quantitative measurements, such as

finding the exact location of joint positions. The generality

of estimating poses of arbitrary skeletons comes at the cost

of precision – the EA algorithm poses the skeleton as close

to the surface to minimize the objective function. However,

for most objects, the kinematic structure often lies behind the

surface captured by depth cameras. Nonetheless, the ability

to get qualitative pose information from an arbitrary skeleton

and depth image pair is a vital development for a variety of

robotic applications.

VI. DISCUSSION AND FUTURE WORK

While the preliminary results are promising, the 23 DOF

model has kinematic chains of only two joints deep. Inves-

tigating how the accuracy of evolutionary algorithm scales

with more complex skeletons is essential, as deeper chains

produce more local optima. Other avenues of research in-

clude inferring poses from non-isomorphic depth images and

tracking kinematic information over time.
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