



Abstract— The purpose of this project is to program an

Erratic robot so that it can automatically maneuver itself in a

corridor and make a 3D map of the environment with

interesting features labeled. The robot will take 2D pictures

periodically as it maneuvers in a corridor, directed by a simple

path planner which determines the robot’s path from the depth

images taken from a Kinect sensor, and from the 2D images, our

algorithm will detect objects of interest and translate their 2D

coordinates into 3D world coordinates. The algorithm is able to

detect 3 kinds of objects; one is the exit signs, which are detected

by using the color information and compactness, and the others

are closed doors and fire extinguishers, which are detected by

matching SIFT features from the template images of those

objects. The resulting clouds of points which correspond to the

locations of the detected objects will be filtered to produce well

localized clusters, which will be added on top of the 3D map of

the corridor. Since the pipeline that matches SIFT features and

converts 2D coordinates in images to 3D world coordinates is

complete, the user can easily add new types of objects of interest

by adding the template images of the objects.

I. INTRODUCTION

he purpose of this project is to program the Erratic robot

so that it will automatically maneuver in a corridor and

from the 2D images it took from its camera during the

maneuvering, our program will extract the locations of exit

signs, closed doors, and fire extinguishers and overlay the

estimated 3D location of them on top of a 3D map of the

environment. We believe that this information will help

lifesaving efforts in a high risk environment tremendously.

 The robot’s path at a given time will be determined by a

simple path planner which takes a depth image from a Kinect

sensor attached to the robot, finds the optimal angle that gives

the robot the path with the longest free space before it would

hit an obstacle, and control the robot’s speed according to the

length of free space in front of the robot, so that it won’t crash

into a wall or an obstacle. While the robot moves according to

the path planner’s direction, it will take 2D pictures with the

Kinect sensor periodically, and from those pictures, the

algorithm will look for “evidences” that suggest the

existences of the objects of interest. The algorithm will use

the 2D location of the evidences in the photos, and the 3D

location of the other points that constitute the 3D map of the

environment to estimate the 3D location of the evidences in

the 3D map. Then it will form point clouds with the evidences

in the 3D space, and after filtering and processing, the

algorithm will come up with the points that represent the

location of the objects of interest. The algorithm will also

display the level of confidence with each of the estimation of

3D position, by varying the size of the marker accordingly.

 The 3D map of the environment will be obtained from a

program named Bundler, which takes 2D photos of an

environment and reconstruct the scene in 3D by extracting

SIFT features from the photos and matching them, and it also

stores the camera’s estimated position and orientation based

on the spatial relationship among the features. The

information on the camera’s position and orientation is stored

in the output of Bundler, and will be used in order to estimate

the 3D position of the objects of interest. The estimated world

coordinates of the objects of interest are visualized along with

the 3D map of the environment, using Processing, an open

source programming language.

II. ISSUES AND IMPLEMENTATION

A. Automatic Maneuvering of the Robot

Though the main goal of our project was to provide an

extensible solution to the problem of semantically mapping

environments, it was necessary to develop a platform specific

navigation solution in order to acquire 2D images with which

the output 3D map is built. To this end we developed a simple

open space finder which operates using the Kinect sensor.

Our technique takes the depth image from the Kinect and

accumulates the values across each column. Then we perform

a box blur on each column and turn the robot towards the

column with the greatest average depth. The box blur is

employed in order to enable the robot to avoid colliding into a

corner by assigning a kind of a potential field to those

columns near the corner. In addition, the program also drives

the robot with the speed that is proportional to the average

depth value of the path that the robot is taking, so that if the

robot is very close to a wall or an obstacle, it will slow down

so that it will have enough time to turn to the optimal path

before it hits the obstacle. This simple solution allowed the

robot to successfully navigate the test environment while

avoiding obstacles and turning around corners.

B. Exit Sign Detection

First of all, the part of our algorithm which detects the

objects of interest from 2D images was developed using

MATLAB. The objects that the algorithm looks for are exit

signs, closed doors, and fire extinguishers, and the exit signs

are detected using different method from the other two; the

detection of the signs exploits the fact that the exit signs are

bright red. Therefore, each pixel was tested by its color; a

pixel was considered as a candidate if it had an R value higher

than some threshold and G and B values smaller than some

threshold. After such a pixel was found, region growing was

performed with the pixel as the seed point, and the adjacent

CS 4758: Automated Semantic Mapping of Environment

Dongsu Lee, ECE, M.Eng., dl624@cornell.edu

Aperahama Parangi, CS, 2013, alp75@cornell.edu

T

pixels that satisfy the same condition were put together as a

region. After the regions were marked, another test was

performed to decrease the error rate, and this time, the shape

of the letters of the exit sign was used. Since the letters have

long and thin form, the ratio between the number of all pixels

in the region and the number of periphery pixels

(compactness) were computed for each region, so that the

regions that were “thin enough” were accepted as an evidence

of an exit sign, and their center of mass coordinates were

stored. The example of input and output images are shown by

the figures 1 and 2. It can be seen that the letters of the exit

sign in the output images are marked with green dots, while

the red fire alarm below the fluorescent light is ignored.

Figure 1. The Input Image

Figure 2. The Ouput Image

C. Closed Doors and Fire Extinguisher Detection

The other types of objects, which are the closed doors and

the fire extinguishers, were detected by matching the SIFT

features of the input images from the robot’s camera to those

of the template images. The applications that detects the SIFT

features and matches the features from two images were

supplied by David Lowe [3]. The template images were

generated by taking pictures at the doors and the fire

extinguishers with varying angle and cropping the region that

contains the object. For fire extinguishers, 2 template images

were taken, and for doors, 9 template images were made since

there were a few types of doors in the environment where our

algorithm will be tested on. The template images used for the

project are shown by the figures below.

Figure 3. Template Images of Doors

Figure 4. Template Images of Fire Extinguishers

It was found that the SIFT algorithm is able to detect

matching features, even though the input images and the

template images were taken from different angle, as shown by

the figure 5, which was why it was deemed sufficient to use

only a small number of templates. The user can easily add

other types of objects that need to be detected by the system

simply by adding the template images of the new types of

object.

The SIFT features of the input images that were matched to

those of the template images were taken as “evidences” of the

existence of objects of interest in the same way the center of

mass locations of the exit sign regions were. All of those

evidences, which are represented as (x, y) position in 2D

images, are then processed by the pipeline that converts the

2D coordinates into 3D world coordinates, after producing

the 3D map of the environment using Bundler. Bundler will

take all of the 2D images taken during the robot’s movement,

stitch them using SIFT features of the images, estimate the

locations of the camera when those images were taken, and

will output a 3D point cloud which consists of the 3D location

of those SIFT features that form a 3D map of the environment,

where the locations of the objects of interest are going to be

overlaid.

Figure 5. Matching SIFT features between two images

D. Estimating the World Coordinates of the Objects of

Interest

Following the identification of the objects of interest and

the formation of 3D map, we use a multistep technique to turn

image space features into well localized world space features.

First, for every object of interest feature we determine if there

exists a Bundler feature within a certain radius in image

space. We then throw out the feature if there does not exist

such a point. The logic for this is that if a pixel is near a

bundler feature pixel in image space, it is likely to be near in

world space and therefore we can use the depth information

of the Bundler feature.

After we filter out object features for which we have poor

depth information, we then project the image space exit sign

features out into world space using projection information

given by Bundler for the nearest bundler feature point. This

results in figure 6, in which we see several point clouds of

varying density and localization.

Next we filter all the points in the cloud by calculating a

density metric and then removing all points below a certain

density threshold. This does a decent job of removing outlier

points and therefore shrinking the clouds in the process. We

calculate our density metric as

where x is the position of a sign feature in world space. This

filtering results in figure 7. Few outliers remain and only

areas of high density remain, as desired.

Then, in order to be able to report specific locations rather

than just return point clusters, we coalesce each point cluster

into one common point where that point’s position is the

average position of all points in the point cluster. We do this

by running an algorithm that looks at pairs of points and if

they are within a sufficiently small radius, marks them as

visited and adds a new point to the list with a position that is

the weighted average of the positions of the child points. In

this way we collapse contiguous regions into single points.

Figure 6. Point cloud of features, before filtering

Figure 7. Point cloud, after filtering

Figure 8. Localized exit signs from the clusters

 Finally we remove clusters with a sufficiently low weight on

the grounds that those clusters are outliers or we do not have

enough evidence to support reporting them as discrete objects.

The result of this technique in total is shown in figure 8. The

size of each point represents the number of points from figure

7 that was merged to form the point, which shows our

algorithm’s confidence on the estimations of the location. The

same process is repeated for different types of objects to get

the complete map with the semantic information.

III. EXPERIMENTS

Our dataset is a set of pictures taken from the third floor of

Upson near the robotics lab and the point cloud produced by

bundler’s processing of those images. While the hallway is

clear of obstacles and relatively devoid of distracting data, we

aimed to make our techniques as robust as possible in order to

function in cluttered environments.

Collecting input image data was primarily performed with

the onboard camera of the AR.Drone, with additional data

collected using the Erratic robot platform. While using the

AR.Drone, data was collected using manual controls while

holding the robot. In the case of the Erratic robot, the robot

was set to maneuver in any direction around its environment

while avoiding obstacles and collecting images of the

environment taken from the depth camera at a rate of 5hz.

First of all, it was confirmed that the simple path planner

for the robot was performing good enough to enable the robot

to just roam around the corridor while it is taking pictures,

while avoiding obstacles. However, it was found that due to

the narrow angle of view of the Kinect sensor, the robot had

difficulties when the obstacles were not visible by the sensor,

although they were very close to the robot. Also, the Kinect

sensor was mounted too high on the robot, so it had

difficulties when the obstacles were very close to the base of

the robot. Aside these limitations regarding hardware, the

robot was able to find its optimal path for taking pictures of

the environment.

As for the perception part of our project, which is the main

component of the project, the output 3D map of the

environment, with the locations of the objects of interest

overlaid, is shown by the figure 9. The features are labeled as

indicated by legend and the yellow line of dots shows the path

of the robot, which is estimated by Bundler.

The original plan was to superpose this map to the floor

plan of this building, but however, it was not possible to get

the plan, so the output map had to be validated in an ad-hoc

manner. Here we used Dice Similarity Coefficient for our

accuracy measure, by matching the ground truth and the

output 3D map visually in the corridor where the test image

data set was taken. For instance in the case of exit signs, three

out of the four identified exit signs were seen to correspond to

real exit signs in the test environment and one was determined

to be a partly obscured red poster, hence giving the DSC of

0.75. The doors gave 0.66, and finally the fire extinguishers

gave 0.4.

Generally speaking, object recognition is a hard problem

and robust recognition in unknown environments is difficult.

Therefore we believe that our accuracy is primarily a result of

the difficulty of building effective classifiers. However in

spite of this, we believe we achieved good results in

converting inaccurate classifier data into localized 3D

positional data, resulting in a nice 3D map that the user can

refer to when exploring the area, which is the main objective

of this project. In general we correctly estimated the position

(determined by inspection) of features and inaccuracy

primarily stemmed from false positives from environmental

noise.

Figure 9. Output 3D Map from the Algorithm

IV. CONCLUSION

For this project, the Erratic robot was programmed to

automatically maneuver in an indoor environment, and from

the 2D images the robot took during the maneuvering, our

perception part of the algorithm detected the objects of

interest, which consist of exit signs, closed doors, and fire

extinguishers, and their location in the 2D images were

converted to a 3D map. The robot was able to move in a

corridor without bumping into an obstacle or a wall, and

although the localization of the objects did not yield such a

good result due to the limited performance of the feature

detector, the algorithm was able to come up with the 3D

world coordinates of those objects, and combined with the

map of the environment given by Bundler, the program was

able to yield a good 3D map that can be valuable for the

further exploration of the environment.

REFERENCES

[1] Noah Snavely, Steven M. Seitz, and Richard Szeliski.

Photo Tourism: Exploring Photo Collections in 3D.

SIGGRAPH Conf. Proc., 2006.

[2] Noah Snavely, Steven M. Seitz, Richard Szeliski.

Modeling the World from Internet Photo Collections.

International Journal of Computer Vision (to appear),

2007.

[3] Lowe, David. "Keypoint detector." David Lowe.

University of British Columbia, July 2005. Web.

<http://www.cs.ubc.ca/~lowe/keypoints/>.

