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Abstract— The purpose of this project is to program an 

Erratic robot so that it can automatically maneuver itself in a 

corridor and make a 3D map of the environment with 

interesting features labeled. The robot will take 2D pictures 

periodically as it maneuvers in a corridor, directed by a simple 

path planner which determines the robot’s path from the depth 

images taken from a Kinect sensor, and from the 2D images, our 

algorithm will detect objects of interest and translate their 2D 

coordinates into 3D world coordinates. The algorithm is able to 

detect 3 kinds of objects; one is the exit signs, which are detected 

by using the color information and compactness, and the others 

are closed doors and fire extinguishers, which are detected by 

matching SIFT features from the template images of those 

objects. The resulting clouds of points which correspond to the 

locations of the detected objects will be filtered to produce well 

localized clusters, which will be added on top of the 3D map of 

the corridor. Since the pipeline that matches SIFT features and 

converts 2D coordinates in images to 3D world coordinates is 

complete, the user can easily add new types of objects of interest 

by adding the template images of the objects. 

I. INTRODUCTION 

he purpose of this project is to program the Erratic robot 

so that it will automatically maneuver in a corridor and 

from the 2D images it took from its camera during the 

maneuvering, our program will extract the locations of exit 

signs, closed doors, and fire extinguishers and overlay the 

estimated 3D location of them on top of a 3D map of the 

environment. We believe that this information will help 

lifesaving efforts in a high risk environment tremendously.  

 

 The robot’s path at a given time will be determined by a 

simple path planner which takes a depth image from a Kinect 

sensor attached to the robot, finds the optimal angle that gives 

the robot the path with the longest free space before it would 

hit an obstacle, and control the robot’s speed according to the 

length of free space in front of the robot, so that it won’t crash 

into a wall or an obstacle. While the robot moves according to 

the path planner’s direction, it will take 2D pictures with the 

Kinect sensor periodically, and from those pictures, the 

algorithm will look for “evidences” that suggest the 

existences of the objects of interest. The algorithm will use 

the 2D location of the evidences in the photos, and the 3D 

location of the other points that constitute the 3D map of the 

environment to estimate the 3D location of the evidences in 

the 3D map. Then it will form point clouds with the evidences 

in the 3D space, and after filtering and processing, the 

algorithm will come up with the points that represent the 

location of the objects of interest. The algorithm will also 

display the level of confidence with each of the estimation of 

3D position, by varying the size of the marker accordingly.  

 
 

 

 The 3D map of the environment will be obtained from a 

program named Bundler, which takes 2D photos of an 

environment and reconstruct the scene in 3D by extracting 

SIFT features from the photos and matching them, and it also 

stores the camera’s estimated position and orientation based 

on the spatial relationship among the features. The 

information on the camera’s position and orientation is stored 

in the output of Bundler, and will be used in order to estimate 

the 3D position of the objects of interest. The estimated world 

coordinates of the objects of interest are visualized along with 

the 3D map of the environment, using Processing, an open 

source programming language.  

 

II. ISSUES AND IMPLEMENTATION 

A. Automatic Maneuvering of the Robot 

Though the main goal of our project was to provide an 

extensible solution to the problem of semantically mapping 

environments, it was necessary to develop a platform specific 

navigation solution in order to acquire 2D images with which 

the output 3D map is built. To this end we developed a simple 

open space finder which operates using the Kinect sensor. 

Our technique takes the depth image from the Kinect and 

accumulates the values across each column. Then we perform 

a box blur on each column and turn the robot towards the 

column with the greatest average depth. The box blur is 

employed in order to enable the robot to avoid colliding into a 

corner by assigning a kind of a potential field to those 

columns near the corner. In addition, the program also drives 

the robot with the speed that is proportional to the average 

depth value of the path that the robot is taking, so that if the 

robot is very close to a wall or an obstacle, it will slow down 

so that it will have enough time to turn to the optimal path 

before it hits the obstacle. This simple solution allowed the 

robot to successfully navigate the test environment while 

avoiding obstacles and turning around corners. 

B. Exit Sign Detection 

First of all, the part of our algorithm which detects the 

objects of interest from 2D images was developed using 

MATLAB. The objects that the algorithm looks for are exit 

signs, closed doors, and fire extinguishers, and the exit signs 

are detected using different method from the other two; the 

detection of the signs exploits the fact that the exit signs are 

bright red. Therefore, each pixel was tested by its color; a 

pixel was considered as a candidate if it had an R value higher 

than some threshold and G and B values smaller than some 

threshold. After such a pixel was found, region growing was 

performed with the pixel as the seed point, and the adjacent 
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pixels that satisfy the same condition were put together as a 

region. After the regions were marked, another test was 

performed to decrease the error rate, and this time, the shape 

of the letters of the exit sign was used. Since the letters have 

long and thin form, the ratio between the number of all pixels 

in the region and the number of periphery pixels 

(compactness) were computed for each region, so that the 

regions that were “thin enough” were accepted as an evidence 

of an exit sign, and their center of mass coordinates were 

stored. The example of input and output images are shown by 

the figures 1 and 2. It can be seen that the letters of the exit 

sign in the output images are marked with green dots, while 

the red fire alarm below the fluorescent light is ignored. 

 

 
Figure 1. The Input Image 

 

 
Figure 2. The Ouput Image 

C. Closed Doors and Fire Extinguisher Detection 

 

The other types of objects, which are the closed doors and 

the fire extinguishers, were detected by matching the SIFT 

features of the input images from the robot’s camera to those 

of the template images. The applications that detects the SIFT 

features and matches the features from two images were 

supplied by David Lowe [3]. The template images were 

generated by taking pictures at the doors and the fire 

extinguishers with varying angle and cropping the region that 

contains the object. For fire extinguishers, 2 template images 

were taken, and for doors, 9 template images were made since 

there were a few types of doors in the environment where our 

algorithm will be tested on. The template images used for the 

project are shown by the figures below. 

 

 
 

Figure 3. Template Images of Doors 

 

 
 

Figure 4. Template Images of Fire Extinguishers 

 

It was found that the SIFT algorithm is able to detect 

matching features, even though the input images and the 

template images were taken from different angle, as shown by 

the figure 5, which was why it was deemed sufficient to use 

only a small number of templates. The user can easily add 

other types of objects that need to be detected by the system 

simply by adding the template images of the new types of 

object. 

 

The SIFT features of the input images that were matched to 

those of the template images were taken as “evidences” of the 

existence of objects of interest in the same way the center of 

mass locations of the exit sign regions were. All of those 

evidences, which are represented as (x, y) position in 2D 

images, are then processed by the pipeline that converts the 

2D coordinates into 3D world coordinates, after producing 

the 3D map of the environment using Bundler. Bundler will 

take all of the 2D images taken during the robot’s movement, 

stitch them using SIFT features of the images, estimate the 



  

locations of the camera when those images were taken, and 

will output a 3D point cloud which consists of the 3D location 

of those SIFT features that form a 3D map of the environment, 

where the locations of the objects of interest are going to be 

overlaid. 

 

 
 

Figure 5. Matching SIFT features between two images 

D. Estimating the World Coordinates of the Objects of 

Interest 

 

Following the identification of the objects of interest and 

the formation of 3D map, we use a multistep technique to turn 

image space features into well localized world space features. 

First, for every object of interest feature we determine if there 

exists a Bundler feature within a certain radius in image 

space. We then throw out the feature if there does not exist 

such a point. The logic for this is that if a pixel is near a 

bundler feature pixel in image space, it is likely to be near in 

world space and therefore we can use the depth information 

of the Bundler feature. 

 

After we filter out object features for which we have poor 

depth information, we then project the image space exit sign 

features out into world space using projection information 

given by Bundler for the nearest bundler feature point. This 

results in figure 6, in which we see several point clouds of 

varying density and localization. 

 

Next we filter all the points in the cloud by calculating a 

density metric and then removing all points below a certain 

density threshold. This does a decent job of removing outlier 

points and therefore shrinking the clouds in the process. We 

calculate our density metric as 

 

 
 

          
   

 

where x is the position of a sign feature in world space. This 

filtering results in figure 7. Few outliers remain and only 

areas of high density remain, as desired. 

 

Then, in order to be able to report specific locations rather 

than just return point clusters, we coalesce each point cluster 

into one common point where that point’s position is the 

average position of all points in the point cluster. We do this 

by running an algorithm that looks at pairs of points and if 

they are within a sufficiently small radius, marks them as 

visited and adds a new point to the list with a position that is 

the weighted average of the positions of the child points. In 

this way we collapse contiguous regions into single points. 

 

 
Figure 6. Point cloud of features, before filtering 

 

 
Figure 7. Point cloud, after filtering 

 

 
Figure 8. Localized exit signs from the clusters 

 
  Finally we remove clusters with a sufficiently low weight on 

the grounds that those clusters are outliers or we do not have 

enough evidence to support reporting them as discrete objects. 

The result of this technique in total is shown in figure 8. The 



  

size of each point represents the number of points from figure 

7 that was merged to form the point, which shows our 

algorithm’s confidence on the estimations of the location. The 

same process is repeated for different types of objects to get 

the complete map with the semantic information. 

III. EXPERIMENTS 

Our dataset is a set of pictures taken from the third floor of 

Upson near the robotics lab and the point cloud produced by 

bundler’s processing of those images. While the hallway is 

clear of obstacles and relatively devoid of distracting data, we 

aimed to make our techniques as robust as possible in order to 

function in cluttered environments. 

 

Collecting input image data was primarily performed with 

the onboard camera of the AR.Drone, with additional data 

collected using the Erratic robot platform. While using the 

AR.Drone, data was collected using manual controls while 

holding the robot. In the case of the Erratic robot, the robot 

was set to maneuver in any direction around its environment 

while avoiding obstacles and collecting images of the 

environment taken from the depth camera at a rate of 5hz. 

 

First of all, it was confirmed that the simple path planner 

for the robot was performing good enough to enable the robot 

to just roam around the corridor while it is taking pictures, 

while avoiding obstacles. However, it was found that due to 

the narrow angle of view of the Kinect sensor, the robot had 

difficulties when the obstacles were not visible by the sensor, 

although they were very close to the robot. Also, the Kinect 

sensor was mounted too high on the robot, so it had 

difficulties when the obstacles were very close to the base of 

the robot. Aside these limitations regarding hardware, the 

robot was able to find its optimal path for taking pictures of 

the environment. 

 

As for the perception part of our project, which is the main 

component of the project, the output 3D map of the 

environment, with the locations of the objects of interest 

overlaid, is shown by the figure 9. The features are labeled as 

indicated by legend and the yellow line of dots shows the path 

of the robot, which is estimated by Bundler. 

 

The original plan was to superpose this map to the floor 

plan of this building, but however, it was not possible to get 

the plan, so the output map had to be validated in an ad-hoc 

manner. Here we used Dice Similarity Coefficient for our 

accuracy measure, by matching the ground truth and the 

output 3D map visually in the corridor where the test image 

data set was taken. For instance in the case of exit signs, three 

out of the four identified exit signs were seen to correspond to 

real exit signs in the test environment and one was determined 

to be a partly obscured red poster, hence giving the DSC of  

0.75. The doors gave 0.66, and finally the fire extinguishers 

gave 0.4. 

 

Generally speaking, object recognition is a hard problem 

and robust recognition in unknown environments is difficult. 

Therefore we believe that our accuracy is primarily a result of 

the difficulty of building effective classifiers. However in 

spite of this, we believe we achieved good results in 

converting inaccurate classifier data into localized 3D 

positional data, resulting in a nice 3D map that the user can 

refer to when exploring the area, which is the main objective 

of this project. In general we correctly estimated the position 

(determined by inspection) of features and inaccuracy 

primarily stemmed from false positives from environmental 

noise. 

Figure 9. Output 3D Map from the Algorithm 



  

 

IV. CONCLUSION 

For this project, the Erratic robot was programmed to 

automatically maneuver in an indoor environment, and from 

the 2D images the robot took during the maneuvering, our 

perception part of the algorithm detected the objects of 

interest, which consist of exit signs, closed doors, and fire 

extinguishers, and their location in the 2D images were 

converted to a 3D map. The robot was able to move in a 

corridor without bumping into an obstacle or a wall, and 

although the localization of the objects did not yield such a 

good result due to the limited performance of the feature 

detector, the algorithm was able to come up with the 3D 

world coordinates of those objects, and combined with the 

map of the environment given by Bundler, the program was 

able to yield a good 3D map that can be valuable for the 

further exploration of the environment. 
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