
 

Abstract—As robots become a normal part of life, ensuring 
a  harmonious  interaction  between  humans  and  robots  will 
become  an  important  consideration  when  designing  and 
deploying robots. In our project, we attempt to design a robot 
than can sense if it is annoying a person, so that it can plan a 
path  through  a  room  that  causes  minimal  annoyance  to 
humans. 

A significant challenge for this  project  was collecting and 
properly labeling training data. We could not collect poses or 
gestures because of the inherent ambiguity associated with the 
poses.  Instead  we  chose  to  record  a  short  video  clip  of  a 
person.  We  do  annoyance  inference  based  on  changes  in 
position,  velocity,  and  acceleration.  We  used  an  SVM 
classifier on 250 datasets gathered from five different people  
of  varying  sizes.  We  had each  person  react  to  a  variety  of 
annoyance stimuli.  Some annoyance stimuli  were acted.  For 
example  we had some  people  flail  their  arms  wildly,  stamp 
their  feet,  and  jump  backwards.  Other  annoyance  stimuli  
were  induced  by us.  For  example  we  sometimes  poked  our 
subjects with a brook, or threw a tennis ball at the subjects to 
evoke  a  response.  Each  person  reacted  differently  to  the 
annoyance stimuli giving us a wide range of data. 

We  performed  a  greedy  feature  selection  algorithm  in 
conjunction  with  100-fold  cross  validation  and  an  SVM 
classifier to get offline results for our data. The classifier has 
an error rate of 38% when not on the robot. 

In order  to test  the  classifier  on the  robot,  we needed to 
first construct a map of the environment. Since the robot was  
too tall to use a laser scanner to build a map, we attempted to 
implement  a  map  builder  using  point  cloud  data  from  the 
Kinect. 

I. INTRODU`CTION

S robots become more and more common in society,  
the  number  of  interactions  between  humans  and 

robots will increase dramatically. If robots are to integrate  
with humans, they will need to serve their purpose without 
upsetting  the  humans  it  interacts  with.  Current  personal 
robots already excel at avoiding humans. However, they are 
nowhere near as good at avoiding paths that would interfere  
with humans. For example, if two people are engaged in a  
conversation  the  robot  may  attempt  to  take  the  path  in 
between them. Another example would be if a person was 
playing  a video  game and a robot  walked  in front  of the 
screen. This paper investigates how to teach a robot that it 
has annoyed someone and how to avoid annoying them in 
the future. The first challenge we needed to overcome was 
a way to capture data that we could label as annoyed or not 
annoyed.  We  decided  to  use  short  video  clips  since 
individual  poses and gestures would be too ambiguous in 
real  world situations.  We used the Microsoft  Kinect  with 
the  OpenNI and nite  frameworks to  record  skeleton  joint 
positions and orientations in a short video clip. To facilitate 

A

data  collection,  we  built  a  ros  node  the  reads  recorded 
streams  of  joint  positions  and  export  them  in  a  Matlab 
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compatible format.  By extracting features from video clips 
we  are  able  to  classify  a  larger  number  of  exaggerated 
reactions with less error than if we were to just use poses 
and gestures. Once all of the features were extracted from 
the video clips we used a greedy feature selection algorithm 
to determine what features to use in our classifier. We had 
over 100 features to choose from based off of joint position,  
velocity,  acceleration,  and  ratios  of  how much  the  joints 
moved relative to the body. The results of the built in SVM 
classifier in MATLAB using the features from our selection 
algorithm is an error rate of about 38%. 

II.  APPROACH 

Since we recorded video clips knowing which ones   had 
annoyed  people  in  them,  it  was  an  obvious  choice  to 
employ some form of supervised learning to teach the robot 
how to determine whether or not it annoyed someone. 

Before  we  could  build  a  classifier,  we  needed  to 
determine  what features  we should look for.  To limit  the 
scope of the project, we only considered a limited number 
of annoyance scenario.  We wanted the robot to be able to  
tell  when  it  was  too  close  to  a  person,  walked  between 
someone having a conversation, or blocked someone's line 
of sight. To further limit the scope of the project, we would 
only  have  our  subjects  act  out  overly  exaggerated 
annoyance reactions. 

The data we recorded included people peering around the 
robot when it blocked their line of sight, flailing their arms 
in the air,  stamping their  feet,  and quickly jumping away 
from the Kinect. We felt that the best way to measure these 
reactions  would  be  linear  and  nonlinear  combinations  of 
joint  displacement,  joint  velocity,  joint  acceleration,  and 
whether  or  not  someone  held  their  hands  in  the  air  for 
consecutive  frames.  However,  this  resulted  in  us  having 
eleven features per joint. Since the Kinect tracks 15 joints,

      
Figure 1:  Examples of how people reacted when the robot annoyed them. 
A) The robot was blocking line of sight, so the subject had to peer around 
the robot. B) The robot violated the subject’s personal space so the subject 

threw his hands in the air.
there were over 150 features that could possibly be used in 
our classifier. We did not have enough datasets to support  
that  many  features  so  we  implemented  a  greedy  feature 
selection algorithm with 100-fold cross validation to choose 
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the 20 best features. 

The  feature  selection  algorithm  initializes  two  empty 
arrays, one for storing the features used so far and one for 
storing the score the of the classifier using the current set of  
features. The score of the classifier is defined as one minus  
the  successful  prediction  rate.  During  each  iteration,  the 
algorithm adds the feature that  results in the lowest score 
when  running  the  classifiers.  For  each  fold,  the  set  of 
features that resulted in the lowest score are appended to a 
results  array.  The features  we choose  to use were  the  20 
most  common  features  the  algorithm  selected  during  the 
cross validation process. 

Once we obtained  these  features,  we were  able  to  test  
how  well  our  annoyance  classifier  worked.  We  used 
MATLAB's built in SVM classifier and logistic regression 
classifier.  On an offline  dataset  containing 250 examples, 
100  training  examples  were  selected  randomly,  and  the 
remaining  examples  were  used  as  test  cases.  The  SVM 
classifier correctly identified 93 video clips as annoyed or 
not annoyed.  This means our algorithm provided  features 
that  were  correct  62% of the time.  However,  the  logistic 
regression classifier was only able to correctly classify 82 
video clips. This means that our feature selection algorithm 
when used with logistic regression was only correct 55% of 
the  time.  Although this  result  appears  to  be discouraging 
for  being  able  to  accurately  predict  annoyance,  it  is  still  
better  than  randomly  guessing  and  is  a  decent  initial  
attempt  at  classifying something  as  ambiguous as  human 
annoyance. 

A. Feature Calculation

The Kinect published skeleton data on a per frame basis 
and  periodically  some  frames  or  joints  would  not  be 
published. To account for this, we developed a MATLAB 
script  which  took time-stamped  joint  data  per  frame  and 
formatted the data into a matrix where each row was a time 
and  each  column was a  joint  variable.  This  large  matrix 
was computed for each video clip we recorded. In order to 
use the SVM classifier in MATLAB and logistic regression,  
we needed to format each matrix of data into a new matrix 
where each row was a video clip ID and each column was a 
feature.  Another  MATLAB script  was  employed  for  this 
purpose.  The  script  would  use  joint  variable  data  to 
compute  displacement,  total  distance  traveled,  average 
velocity,  total  speed,  and  net  acceleration  for  each  joint.  
The  script  would  use  these  numbers  to  calculate  what 
features to use for the feature selection algorithm.

 We  also  used  whether  or  not  a  person's  hands  were 
above their head for consecutive frames as a feature. If the 
joint variable data appears to indicate that  the person was 
annoyed,  then  having  their  hands  above  their  head  for 
consecutive  frames  suggests  that  the  person  is  staying 
annoyed.  Conversely,  if  a  person is not  annoyed and just 
happens to  have  their  hands over there  head,  this feature 
does not immediately imply that the person is annoyed.

Once all of these features were extracted from the raw 
Kinect skeleton data and placed into matrix form, we could 

use the built in SVM and logistic  regression classifiers to 
check or results.

B. Feature Selection Results

The results of our feature  selection algorithm were not  
too  surprising.  The  most  popular  features  were  knee  and 
joint  velocity  and acceleration.  This makes sense because 
in almost all of the annoyance reactions, there was a sudden 
change  in  these  joint's  position.  Although  the  change  in 
position  might  be  comparable  to  when  someone  is  just  
going about their daily business, the fact that they suddenly 
change  is  significant.  Our  feature  selector  was  able  to 
capture  this  real  world  observation.  Additionally,  joints 
tend  to  move  quicker  when  a  person  is  annoyed  versus 
when they are simply milling about. The feature selection 
algorithm was able to capture this, but only for knees and 
elbows. We had thought that the selection algorithm would 
choose to  use the  velocities  of  hands and feet  since  they 
were  both  moving  a  lot  when  our  subjects  were  flailing 
there  arms  and  stamping  their  feet.  Also,  the  selection 
algorithm  found  that  whether  or  not  a  person  had  their  
hands  above  their  head  for  consecutive  frames  was  a 
significant detail.

The  one  surprise  from  our  feature  selection  algorithm 
was that  ratios of joint  velocities and accelerations to the  
body velocity and acceleration were almost never used. We 
had  thought  that  when a  person  was stamping their  feet,  
peering around an obstacle,  or flailing their hands that the 
person's joints would be moving and that  the body would 
be  mostly  stationary.  This  would  mean  that  for  annoyed 
reactions  this  ration  would  be  very  large.  However,  if  a 
person  was  going  about  their  daily  business  we  were 
expecting a ration of approximately one.  We had thought 
that this would allow for the classifier to make distinctions 
between annoyed and not annoyed. However, this was not 
the  case.  See  the  appendix  for  a  table  summarizing  the 
results of our feature selection algorithm.

C. Offline Results

The  results  of  our  feature  selection  algorithm  are 
summarized in the figure below. Additionally, the results of 
testing the training data against itself,  the cross validation 
tests, and final  offline testing are summarized below. The 
average error for testing the training data against itself was 
1% for the SVM classifier and a maximum error of 9.7%. 
The  logistic  regression  classifier  had  a  surprisingly  large 
average error of about 24% with a maximum error of 30% 
when  testing  the  training  data  against  itself.  While 
performing  the  100-fold  cross  validation,  the  SVM 
classifier 



Figure 1: Offline Results while running 100-fold cross validation

Table 1: Results from two different classifiers

had an  average  error  of  about  35%,  whereas  the  logistic 
regression  classifier  had  an  average  error  of  about  25%. 
The  final  offline  testing  results  using  random  test  and 
training data out of the 250 datasets we collected are: 38% 
error  for  SVM  classification  and  45%  error  for  logistic  
regression classification. 

III.EXPERIMENTS

We initially planned to have robot navigate though a 
room  using  a  cost-map  that  was  augmented  with 
additional costs to avoid annoying people. However, we 
were unable to get this working on the robot.

IV. NAVIGATION ISSUES

We initially  planned to build a static  map of the room 
using  SLAM  to  seed  the  cost-map.  However  we 
encountered  some  issues.  We  eventually  got  2D  slam 
working with a pointcloud_to_laserscan simulator,  but the 
original version missed many of the obstacles in the map.

Next  we tried  using rgbdslam,  but  it  was too  resource  
intensive and when we projected the maps down, we still 
needed further processing for the map.

Figure 2: Map of the Robot Learning lab using the built in gmapping 
package in ROS. Although it is able to detect the walls, tables, chairs, and 

other objects in the lab are not marked as obstacles

Figure 3: A 3D Point Cloud Representation of the Robot Learning Lab

Our third attempt to build a map with the Kinect  point  
cloud data was to use the point cloud library to filter out the  
floor, and then use the largest depth in each column of the 
point cloud to convert the Kinect point cloud to a fake laser 
scanner.  This  method  would  require  using  the  built  in 
RANSAC  planar  filtering  algorithm  in  the  point  cloud 
library, then removing them from the Kinect's point cloud 
data. We would then train the robot using a floor classifier 
so  that  it  would



Figure 4: 2D projection of the RGBDLAM map of the Robot Learning 
Lab Note that the part of the lab with the robotic arm is completely marked 

as an obstacle

not  use  the  depth  data  from  points  corresponding  to  the 
floor  when converting  the  point  cloud  data  to  laser  scan 
data. Although we were successfully able to filter images in 
offline experiments,  the time required  to filter  each  point  
cloud was prohibitive to using it on the actual robot. 

It  turned  out  there  was simpler  solution.  We  modified 
pointcloud_to_laserscan to take the closest  reading at  any 
height range that did not include the floor. We put a lower 
limit  on the height by measuring the configuration of the 
Kinect on the robot. This worked well to produce maps the 
showed most obstacles, but the maps were slightly noisy.

Since we were unable to get the navigation stack 
working, it was necessary for us to use simple control 

commands when performing the experiments on the robot. 

 
Figure 5: Picture of a shelf in the robot learning lab with the floor filtered 

out

Figure 6: Map of the corner of the Robot Learning Lab with a garbage 
can and table. Even though the garbage can and table are not in the same 

plane as the laser scans, they are still added as obstacles to the map.

Our solution was to have the robot drive in the direction 
of a person it detects.  If the robot detects that  it  annoyed 
the person it will stop and back up. If it does not detect that  
it  has  annoyed  the  person,  it  will  attempt  to  follow  the 
person.  We were  unable  to get  this setup working either.  
Although this was not how we intended to experiment with 
the robot we were still able to test our annoyance detection  
algorithm  in  situations  similar  to  those  a  robot  would 
experience.

V. FUTURE WORK

A. Finding Better Features

Although  we  were  satisfied  with  the  features  our 
classifier could select  from, better choices must exist that 
would reduce the error of our classifier.  The robot would 
need  to  know what  context  of annoyed poses  in order  to 
consistently  and  accurately  identify  human  annoyance.  
These  context  clues  can  probably  be  implemented  as 
features and increase the ability of the robot to learn when 
it is annoying humans. 

For this project, we limited ourselves to Kinect skeleton 
data.  However,  body  posture  is  not  the  only  way  the 
humans convey that they are irritated. Audio cues could be 
employed to increase the number of significant features the 
classifier  can  use.  For example  someone  who is annoyed 
may make a sudden loud noise or make a fake  coughing 
noise.  Since  the  Kinect  also  has  a  microphone  array,  it  
should be able to process these inputs to provide a wider 
and hopefully more useful range of features to use. 

B. Using Hidden Markov Models 

When we actively run the classifier on the robot, we use 
the  five  most  recent  frames  as  test  data  to  feed  into  the 
SVM classifier. While doing offline testing we noticed that  
people who were annoyed in one frame, were very likely to 



still be annoyed in the next. Similarly, people who were not 
annoyed in one frame were very like to remain not annoyed 
in the next frame. Using this observation, we could create  
an  HMM  which  would  encourage  the  robot  to  think  a 
person  remained  in  their  previous  state  unless  the  sensor 
data  told  them  otherwise.  Although  this  would  not  help 
with the initial classification of whether or not a person was 
annoyed,  this  would  produce  smoother  results  while 
running on the robot. This means the robot is less likely to 
jump  between  states  which  would  also  help  reduce  how 
much the robot is annoying the person.

Although an HMM would help to reduce  how much a 
robot annoys a person, it  would be difficult  to obtain the 
transition probabilities since the offline testing is not done 
on a  per  frame  basis.  This  means  that  in  order  for  us to 
build  an  HMM we would  need  to  know exactly  when  a 
person transitioned from annoyed to not annoyed and vice 
versa. This is not easy since we would have to synchronize  
our  real  time  results  with  the  frames  that  our  skeleton 
capture program records. However, if we could find a way 
to do this, the results on the actual  robot would definitely 
improve.

C. Reinforcement Learning

Although we built an annoyance detector with moderate 
success, we were unable to teach the robot how to navigate 
through a room without annoying people. This would 
require two things from the project. First, the classifier 
would need to have higher accuracy in order for the 
reinforcement learning algorithm to have a chance at 
working. Second it would require the robot to be able to 
remember objects of interest and poses humans make when 
they are in an annoyable state.

To perform the reinforcement learning we would also 
need a way of storing and learning from joint orientations. 
This would allow the robot to learn when a person is facing 
an object of interest as well as when two people are facing 
each other. If the robot is able to learn that whenever it 
walks through two people having a conversation that it 
annoys them, it could use reinforcement learning to avoid 
paths that go between people who are oriented towards 
each other. 

Similarly, the point cloud data from the Kinect could be 
used to store objects of interest. If the robot walks between 
a person and a painting on a wall, we could use a 
combination of reinforcement learning and supervised 
learning to teach the robot what certain objects of interest 
look like. Supervised learning would give the robot some 
initial objects of interest and reinforcement learning would 
be used when the robot walks between a person and an 
unknown object of interest. If the robot detects that he 
annoyed someone by blocking their line of sight to an 
object of interest, the robot will learn not to walk between a 
person oriented towards an object of similar shape.

Although our classifier for detecting annoyance is a 
small step towards teaching robots to avoid annoying 
humans, there are still many areas that need to be explored 
more thoroughly before personal robots can smoothly 
interact with humans in a human environment. In addition 
to needing better features, our project also indicated that a 

reliable mapping and localization implementation needs to 
be made for taller robots. Although there are tools to 
convert a 3D map to a 2D occupancy grid, creating the 3D 
map is time intensive and the implementation we found on 
ROS was prone to crashing. However, since the robot is 
equipped with a Kinect, it should be possible to generate an 
accurate map of an environment regardless of the robots 
dimensions.

VI. CONCLUSION

To summarize,  the  goal  of  our  project  was  to  teach  a  
robot to detect whether or not it was annoying a human. To 
achieve this goal, we used skeleton data from the Kinect to 
extract  significant  features  to  use  in  an  SVM  classifier.  
Although we had a moderate offline success rate  of 62%, 
we were not able to thoroughly test the annoyance detector  
on the robot.

Looking  at  the  rising  demand  for  person  robots  to  do 
menial  labor  around  the  house,  it  becomes  apparent  that  
robots need not only navigate through physical  space,  but 
they  must  do  so  without  disturbing  the  user.  If  in  the 
process of doing its task, the robot upsets its user, then the 
robot is not doing its job correctly. The ultimate goal of this 
line  of  study  is  to  teach  robots  how to  navigate  through 
human populated areas without irritating any humans.

APPENDIX

Results from forward selection algorithm

Table 2: The 20 features our selection algorithm predicted. 
* Is the Boolean value for whether or not the person’s hands were in the 

fair for more than three consecutive frames during the video clip.
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