

Abstract—As robots become a normal part of life, ensuring
a harmonious interaction between humans and robots will
become an important consideration when designing and
deploying robots. In our project, we attempt to design a robot
than can sense if it is annoying a person, so that it can plan a
path through a room that causes minimal annoyance to
humans.

A significant challenge for this project was collecting and
properly labeling training data. We could not collect poses or
gestures because of the inherent ambiguity associated with the
poses. Instead we chose to record a short video clip of a
person. We do annoyance inference based on changes in
position, velocity, and acceleration. We used an SVM
classifier on 250 datasets gathered from five different people
of varying sizes. We had each person react to a variety of
annoyance stimuli. Some annoyance stimuli were acted. For
example we had some people flail their arms wildly, stamp
their feet, and jump backwards. Other annoyance stimuli
were induced by us. For example we sometimes poked our
subjects with a brook, or threw a tennis ball at the subjects to
evoke a response. Each person reacted differently to the
annoyance stimuli giving us a wide range of data.

We performed a greedy feature selection algorithm in
conjunction with 100-fold cross validation and an SVM
classifier to get offline results for our data. The classifier has
an error rate of 38% when not on the robot.

In order to test the classifier on the robot, we needed to
first construct a map of the environment. Since the robot was
too tall to use a laser scanner to build a map, we attempted to
implement a map builder using point cloud data from the
Kinect.

I. INTRODU`CTION

S robots become more and more common in society,
the number of interactions between humans and

robots will increase dramatically. If robots are to integrate
with humans, they will need to serve their purpose without
upsetting the humans it interacts with. Current personal
robots already excel at avoiding humans. However, they are
nowhere near as good at avoiding paths that would interfere
with humans. For example, if two people are engaged in a
conversation the robot may attempt to take the path in
between them. Another example would be if a person was
playing a video game and a robot walked in front of the
screen. This paper investigates how to teach a robot that it
has annoyed someone and how to avoid annoying them in
the future. The first challenge we needed to overcome was
a way to capture data that we could label as annoyed or not
annoyed. We decided to use short video clips since
individual poses and gestures would be too ambiguous in
real world situations. We used the Microsoft Kinect with
the OpenNI and nite frameworks to record skeleton joint
positions and orientations in a short video clip. To facilitate

A

data collection, we built a ros node the reads recorded
streams of joint positions and export them in a Matlab

Same Sinensky is affiliated with the Department of Computer Science,
Cornell University. David Diner is affiliated with the Department of
Mechanical and Aerospace Engineering, Cornell University. {scs238,
dg386}@cornell.edu

compatible format. By extracting features from video clips
we are able to classify a larger number of exaggerated
reactions with less error than if we were to just use poses
and gestures. Once all of the features were extracted from
the video clips we used a greedy feature selection algorithm
to determine what features to use in our classifier. We had
over 100 features to choose from based off of joint position,
velocity, acceleration, and ratios of how much the joints
moved relative to the body. The results of the built in SVM
classifier in MATLAB using the features from our selection
algorithm is an error rate of about 38%.

II. APPROACH

Since we recorded video clips knowing which ones had
annoyed people in them, it was an obvious choice to
employ some form of supervised learning to teach the robot
how to determine whether or not it annoyed someone.

Before we could build a classifier, we needed to
determine what features we should look for. To limit the
scope of the project, we only considered a limited number
of annoyance scenario. We wanted the robot to be able to
tell when it was too close to a person, walked between
someone having a conversation, or blocked someone's line
of sight. To further limit the scope of the project, we would
only have our subjects act out overly exaggerated
annoyance reactions.

The data we recorded included people peering around the
robot when it blocked their line of sight, flailing their arms
in the air, stamping their feet, and quickly jumping away
from the Kinect. We felt that the best way to measure these
reactions would be linear and nonlinear combinations of
joint displacement, joint velocity, joint acceleration, and
whether or not someone held their hands in the air for
consecutive frames. However, this resulted in us having
eleven features per joint. Since the Kinect tracks 15 joints,

Figure 1: Examples of how people reacted when the robot annoyed them.
A) The robot was blocking line of sight, so the subject had to peer around
the robot. B) The robot violated the subject’s personal space so the subject

threw his hands in the air.
there were over 150 features that could possibly be used in
our classifier. We did not have enough datasets to support
that many features so we implemented a greedy feature
selection algorithm with 100-fold cross validation to choose

Annoyance Detection Using the Microsoft Kinect

Sam Sinensky, David Diner – Cornell University

the 20 best features.

The feature selection algorithm initializes two empty
arrays, one for storing the features used so far and one for
storing the score the of the classifier using the current set of
features. The score of the classifier is defined as one minus
the successful prediction rate. During each iteration, the
algorithm adds the feature that results in the lowest score
when running the classifiers. For each fold, the set of
features that resulted in the lowest score are appended to a
results array. The features we choose to use were the 20
most common features the algorithm selected during the
cross validation process.

Once we obtained these features, we were able to test
how well our annoyance classifier worked. We used
MATLAB's built in SVM classifier and logistic regression
classifier. On an offline dataset containing 250 examples,
100 training examples were selected randomly, and the
remaining examples were used as test cases. The SVM
classifier correctly identified 93 video clips as annoyed or
not annoyed. This means our algorithm provided features
that were correct 62% of the time. However, the logistic
regression classifier was only able to correctly classify 82
video clips. This means that our feature selection algorithm
when used with logistic regression was only correct 55% of
the time. Although this result appears to be discouraging
for being able to accurately predict annoyance, it is still
better than randomly guessing and is a decent initial
attempt at classifying something as ambiguous as human
annoyance.

A. Feature Calculation

The Kinect published skeleton data on a per frame basis
and periodically some frames or joints would not be
published. To account for this, we developed a MATLAB
script which took time-stamped joint data per frame and
formatted the data into a matrix where each row was a time
and each column was a joint variable. This large matrix
was computed for each video clip we recorded. In order to
use the SVM classifier in MATLAB and logistic regression,
we needed to format each matrix of data into a new matrix
where each row was a video clip ID and each column was a
feature. Another MATLAB script was employed for this
purpose. The script would use joint variable data to
compute displacement, total distance traveled, average
velocity, total speed, and net acceleration for each joint.
The script would use these numbers to calculate what
features to use for the feature selection algorithm.

 We also used whether or not a person's hands were
above their head for consecutive frames as a feature. If the
joint variable data appears to indicate that the person was
annoyed, then having their hands above their head for
consecutive frames suggests that the person is staying
annoyed. Conversely, if a person is not annoyed and just
happens to have their hands over there head, this feature
does not immediately imply that the person is annoyed.

Once all of these features were extracted from the raw
Kinect skeleton data and placed into matrix form, we could

use the built in SVM and logistic regression classifiers to
check or results.

B. Feature Selection Results

The results of our feature selection algorithm were not
too surprising. The most popular features were knee and
joint velocity and acceleration. This makes sense because
in almost all of the annoyance reactions, there was a sudden
change in these joint's position. Although the change in
position might be comparable to when someone is just
going about their daily business, the fact that they suddenly
change is significant. Our feature selector was able to
capture this real world observation. Additionally, joints
tend to move quicker when a person is annoyed versus
when they are simply milling about. The feature selection
algorithm was able to capture this, but only for knees and
elbows. We had thought that the selection algorithm would
choose to use the velocities of hands and feet since they
were both moving a lot when our subjects were flailing
there arms and stamping their feet. Also, the selection
algorithm found that whether or not a person had their
hands above their head for consecutive frames was a
significant detail.

The one surprise from our feature selection algorithm
was that ratios of joint velocities and accelerations to the
body velocity and acceleration were almost never used. We
had thought that when a person was stamping their feet,
peering around an obstacle, or flailing their hands that the
person's joints would be moving and that the body would
be mostly stationary. This would mean that for annoyed
reactions this ration would be very large. However, if a
person was going about their daily business we were
expecting a ration of approximately one. We had thought
that this would allow for the classifier to make distinctions
between annoyed and not annoyed. However, this was not
the case. See the appendix for a table summarizing the
results of our feature selection algorithm.

C. Offline Results

The results of our feature selection algorithm are
summarized in the figure below. Additionally, the results of
testing the training data against itself, the cross validation
tests, and final offline testing are summarized below. The
average error for testing the training data against itself was
1% for the SVM classifier and a maximum error of 9.7%.
The logistic regression classifier had a surprisingly large
average error of about 24% with a maximum error of 30%
when testing the training data against itself. While
performing the 100-fold cross validation, the SVM
classifier

Figure 1: Offline Results while running 100-fold cross validation

Table 1: Results from two different classifiers

had an average error of about 35%, whereas the logistic
regression classifier had an average error of about 25%.
The final offline testing results using random test and
training data out of the 250 datasets we collected are: 38%
error for SVM classification and 45% error for logistic
regression classification.

III.EXPERIMENTS

We initially planned to have robot navigate though a
room using a cost-map that was augmented with
additional costs to avoid annoying people. However, we
were unable to get this working on the robot.

IV. NAVIGATION ISSUES

We initially planned to build a static map of the room
using SLAM to seed the cost-map. However we
encountered some issues. We eventually got 2D slam
working with a pointcloud_to_laserscan simulator, but the
original version missed many of the obstacles in the map.

Next we tried using rgbdslam, but it was too resource
intensive and when we projected the maps down, we still
needed further processing for the map.

Figure 2: Map of the Robot Learning lab using the built in gmapping
package in ROS. Although it is able to detect the walls, tables, chairs, and

other objects in the lab are not marked as obstacles

Figure 3: A 3D Point Cloud Representation of the Robot Learning Lab

Our third attempt to build a map with the Kinect point
cloud data was to use the point cloud library to filter out the
floor, and then use the largest depth in each column of the
point cloud to convert the Kinect point cloud to a fake laser
scanner. This method would require using the built in
RANSAC planar filtering algorithm in the point cloud
library, then removing them from the Kinect's point cloud
data. We would then train the robot using a floor classifier
so that it would

Figure 4: 2D projection of the RGBDLAM map of the Robot Learning
Lab Note that the part of the lab with the robotic arm is completely marked

as an obstacle

not use the depth data from points corresponding to the
floor when converting the point cloud data to laser scan
data. Although we were successfully able to filter images in
offline experiments, the time required to filter each point
cloud was prohibitive to using it on the actual robot.

It turned out there was simpler solution. We modified
pointcloud_to_laserscan to take the closest reading at any
height range that did not include the floor. We put a lower
limit on the height by measuring the configuration of the
Kinect on the robot. This worked well to produce maps the
showed most obstacles, but the maps were slightly noisy.

Since we were unable to get the navigation stack
working, it was necessary for us to use simple control

commands when performing the experiments on the robot.

Figure 5: Picture of a shelf in the robot learning lab with the floor filtered

out

Figure 6: Map of the corner of the Robot Learning Lab with a garbage
can and table. Even though the garbage can and table are not in the same

plane as the laser scans, they are still added as obstacles to the map.

Our solution was to have the robot drive in the direction
of a person it detects. If the robot detects that it annoyed
the person it will stop and back up. If it does not detect that
it has annoyed the person, it will attempt to follow the
person. We were unable to get this setup working either.
Although this was not how we intended to experiment with
the robot we were still able to test our annoyance detection
algorithm in situations similar to those a robot would
experience.

V. FUTURE WORK

A. Finding Better Features

Although we were satisfied with the features our
classifier could select from, better choices must exist that
would reduce the error of our classifier. The robot would
need to know what context of annoyed poses in order to
consistently and accurately identify human annoyance.
These context clues can probably be implemented as
features and increase the ability of the robot to learn when
it is annoying humans.

For this project, we limited ourselves to Kinect skeleton
data. However, body posture is not the only way the
humans convey that they are irritated. Audio cues could be
employed to increase the number of significant features the
classifier can use. For example someone who is annoyed
may make a sudden loud noise or make a fake coughing
noise. Since the Kinect also has a microphone array, it
should be able to process these inputs to provide a wider
and hopefully more useful range of features to use.

B. Using Hidden Markov Models

When we actively run the classifier on the robot, we use
the five most recent frames as test data to feed into the
SVM classifier. While doing offline testing we noticed that
people who were annoyed in one frame, were very likely to

still be annoyed in the next. Similarly, people who were not
annoyed in one frame were very like to remain not annoyed
in the next frame. Using this observation, we could create
an HMM which would encourage the robot to think a
person remained in their previous state unless the sensor
data told them otherwise. Although this would not help
with the initial classification of whether or not a person was
annoyed, this would produce smoother results while
running on the robot. This means the robot is less likely to
jump between states which would also help reduce how
much the robot is annoying the person.

Although an HMM would help to reduce how much a
robot annoys a person, it would be difficult to obtain the
transition probabilities since the offline testing is not done
on a per frame basis. This means that in order for us to
build an HMM we would need to know exactly when a
person transitioned from annoyed to not annoyed and vice
versa. This is not easy since we would have to synchronize
our real time results with the frames that our skeleton
capture program records. However, if we could find a way
to do this, the results on the actual robot would definitely
improve.

C. Reinforcement Learning

Although we built an annoyance detector with moderate
success, we were unable to teach the robot how to navigate
through a room without annoying people. This would
require two things from the project. First, the classifier
would need to have higher accuracy in order for the
reinforcement learning algorithm to have a chance at
working. Second it would require the robot to be able to
remember objects of interest and poses humans make when
they are in an annoyable state.

To perform the reinforcement learning we would also
need a way of storing and learning from joint orientations.
This would allow the robot to learn when a person is facing
an object of interest as well as when two people are facing
each other. If the robot is able to learn that whenever it
walks through two people having a conversation that it
annoys them, it could use reinforcement learning to avoid
paths that go between people who are oriented towards
each other.

Similarly, the point cloud data from the Kinect could be
used to store objects of interest. If the robot walks between
a person and a painting on a wall, we could use a
combination of reinforcement learning and supervised
learning to teach the robot what certain objects of interest
look like. Supervised learning would give the robot some
initial objects of interest and reinforcement learning would
be used when the robot walks between a person and an
unknown object of interest. If the robot detects that he
annoyed someone by blocking their line of sight to an
object of interest, the robot will learn not to walk between a
person oriented towards an object of similar shape.

Although our classifier for detecting annoyance is a
small step towards teaching robots to avoid annoying
humans, there are still many areas that need to be explored
more thoroughly before personal robots can smoothly
interact with humans in a human environment. In addition
to needing better features, our project also indicated that a

reliable mapping and localization implementation needs to
be made for taller robots. Although there are tools to
convert a 3D map to a 2D occupancy grid, creating the 3D
map is time intensive and the implementation we found on
ROS was prone to crashing. However, since the robot is
equipped with a Kinect, it should be possible to generate an
accurate map of an environment regardless of the robots
dimensions.

VI. CONCLUSION

To summarize, the goal of our project was to teach a
robot to detect whether or not it was annoying a human. To
achieve this goal, we used skeleton data from the Kinect to
extract significant features to use in an SVM classifier.
Although we had a moderate offline success rate of 62%,
we were not able to thoroughly test the annoyance detector
on the robot.

Looking at the rising demand for person robots to do
menial labor around the house, it becomes apparent that
robots need not only navigate through physical space, but
they must do so without disturbing the user. If in the
process of doing its task, the robot upsets its user, then the
robot is not doing its job correctly. The ultimate goal of this
line of study is to teach robots how to navigate through
human populated areas without irritating any humans.

APPENDIX

Results from forward selection algorithm

Table 2: The 20 features our selection algorithm predicted.
* Is the Boolean value for whether or not the person’s hands were in the

fair for more than three consecutive frames during the video clip.

ACKNOWLEDGMENT

-Professor Ashutosh Saxena
-Colin Ponce
-PCL
-OpenNI
-ROS

REFERENCES

[1] R. B. Rusu and S. Cousins, “3D is here: Point Cloud
 Libarary (PCL)”, IEEE International Conference on
 Robotics and Automation, May 2011.

[2] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss,
 and W. Bugard, OctoMap: A Probabilistic Flexible, and

 Compact 3D Map Representation for Robotic Systems,
 Proceedings of the ICRA 2010 Workshop on Best
 Practice in 3D Perception and Modeling for Mobile
 Manipulation, May 2010.

	I. INTRODU`CTION
	II. APPROACH
	A. Feature Calculation
	B. Feature Selection Results
	C. Offline Results

	III. EXPERIMENTS
	IV. NAVIGATION ISSUES
	V. FUTURE WORK
	A. Finding Better Features
	B. Using Hidden Markov Models
	C. Reinforcement Learning

	VI. Conclusion

