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I. ABSTRACT 

We propose and implement an application of existing 

robot learning algorithms to create a robotic sentry: the robot 

can gauge the hostility of an intruder and make intelligent 

decisions to aim and shoot.  

Using existing machine learning algorithms and stochastic 

modeling we create ROS code to be utilized on a physical 

PR2 robot. 

II. INTRODUCTION 

The goal of the project is to develop a robot sentry that 

guards a specific forbidden zone (e.g. a door or a narrow 

passage), observing and tracking incoming people (Figure 1). 

Any approaching human has to stop by the sentry and be 

acknowledged (standing few seconds facing the robot or 

performing a specific gesture). If he or she doesn’t comply, 

the sentry will alert and “shoot him down” with Nerf gun 

triggered by the gripper. Using the Kinect system, we detect 

the body frames in respect of the sentry and the forbidden 

zone. Discrimination between safe or trespassing behavior is 

based on both pose detection and trajectory prediction and is 

based on supervised learning techniques. Additionally, a 

Kalman Filter is utilized to predict the steps of the intruder so 

the robot can aim at a spot in the future to hit the target.  

For this project we were originally provided with Willow 

Garage’s PR2 robot and we planned to apply our results to 

this physical robot. However, due to mechanical failures of 

the robot we were forced limit our system only to a 

simulation. 

  
Figure 1.  High level description of sentry robot function 

III. RELATED WORK 

Robotics sentry research has been done by various 

government and corporations.  Papers that deal directly to 

 
 

such applications are not readily available as they pose 

legitimate security issues. However, of the publicly known 

sentry-like robots, the most common design is the mounted 

gun that is human operated and enhanced with sensors help in 

detecting intruders. For instance, Samsung has implemented 

the SGR-A1 on the demilitarized zone in South Korea as a 

physical troop replacement [4].  
There is a major leap of faith required for militaries to 

utilize a fully autonomous robot. The problem not being the 

lack of performance but rather the reliability of a system that 

distinguish friend from foe.  Sung et al were able to 

implement a hierarchical MEMM with the Microsoft Kinect 

to distinguish different human activities [1]. In this paper, we 

simplify the problem of human identification as we are more 

interested in the integration of a sentry robot that can robustly 

target and shoot targets. However, we followed the approach 

of using an RGBD sensor to get more reliable classification 

results [3]. 
The main component of our work involves path prediction 

of sentry targets as well as responsive targeting. In Hamasaki 
et al, the authors approaches this problem by modeling human 
movement tendencies and creating valid paths for robots to 
avoid future collisions with humans[4]. We follow a similar 
approach but instead model our Nerfgun trajectories to enable 
future collision with human targets. As in Hamasaki et al, we 
make the assumption that human targets do not make sudden 
changes in movement direction or speed. 

IV. PHYSICAL SETUP 

We use Willow Garage PR2 robot [6], with a Kinect depth 

camera head mounted. Gun is mounted on one arm, firmly 

attached to the wrist and the gripper. 

In order to simplify the process of shooting and reloading. 

we select Nerfgun Barricade rv-10, a motorized semi-auto 

revolver with a clip of 10 bullets. Bullets are standard 

Nerfgun foam bullet with soft tip: once the motor is turned on, 

triggering requires little pressure. 

 PR2 gripper are not meant to hold a gun, so we build a 

frame holding the gun that can be attached to the wrist joint 

with Velcro strips: the frame is solidly attached and stays in 

position regardless the joint orientation(fig 2). The gripper 

can freely move and it is used to partially support the structure 

weight. An narrow metal extension is attached to one of the 

gripper ends so that it fits in the trigger. Opening the gripper 

pushes the trigger and shoot the gun: gripper then needs to 

close to let the gun reload.  
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Figure 2.  Physical robot connection to PR2 gripper 

V. STOCHASTIC NERFGUN BULLET MODELING 

In order to create a physical model of the gun, we perform 

a set of experiments to measure speed and trajectory of the 

bullets: gun is held in place by a stable grappler(Figure 4) 

while the entire clip is emptied on a target. Using a camera 

(23fps) we record and track the bullet flying(Figure 5); 

tracking is done using the freeware software Tracking. In a 

first configuration of the experiment, a target is positioned at 

a variable distance, with the camera is facing it, so that we can 

measure where the bullet lands on the target; in a second 

configuration, the camera is placed perpendicular to shooting 

direction, so that the entire trajectory can be recorded. 

We shoot 50 bullets to targets placed at distances varying 

from 2.8 m to 5.7 m for a total of 80 bullets. We also record 20 

trajectories in the second configuration. Analyzing the data, 

we observe that the bullets leaves the gun with an initial 

momentum and flies under the only effect of gravity (air 

friction is not relevant in our condition). From the spreading 

of the landing points we extract a radial distribution of the 

bullet direction. 

A model the bullet as a frictionless mass with initial 

constant momentum (v = 17.8 m/s) and a direction normally 

distributed around the aiming direction (delta theta = 1 

degree, extracted from data) fits well the data. 

 
Figure 3.  Radial dispersion vs target distance 

  

Figure 4.  Setup to test nerfgun shot distribution 

 
Figure 5.  Determining bullet speed with software 

VI.  AIMING AND INVERSE KINEMATICS 

A sentry has to be fast in aiming and shooting a moving 

target, so we simplify the inverse kinematics problem (i.e. 

transforming the gun orientation to robot arm joints angles) 

by placing the robot on a “crane” configuration (Figure 6) that 

directly maps joints angles to gun yaw and pitch. 

The frame transformation between robot wrist and gun is 

hardcoded in the aiming routine. 

 
Figure 6.  Configuration of PR2 robot when shooting  



  

 
Figure 7.  Stochastic distribution of bullet (in blue) on target (red) 

VII.  THREAT DETECTION AND TRACKING 

A. Hostility Classification Using SVM 

Another important feature of a robotic sentry is the ability 

to reliably distinguish between friendly and hostile targets. In 

order to provide this classification functionality, we first 

come up with a list of classes of behaviors that we would 

deem to be either benign or suspicious, which can be seen 

below in Figure 8. 

  
Figure 8.  Diffent types of friendly and hostile behaviors 

Next, using a script we previously wrote allowing us to 

record joint position and orientation data, we generated two 

datasets for each group member performing each class of 

behavior(Figures 9-10) in front of the Kinect, for a total of 48 

sets. Each dataset contains position and orientation data of the 

subject’s joints at incremental time-steps as they go through a 

certain set of motions. Of these datasets, 8 sets (one for each 

class) were set aside for testing purposes, resulting in 40 

training sets and 8 testing sets. After normalizing the data so 

that all joint positions are in relation to the torso, we use SVM 

to build a model from our training sets. 

 
Figure 9.  Friendly vs hostile skeleton 

  
Figure 10.  Visualizing skeletons with Kinect 

 

Our results are as shown in Table 1, where we attempt to 

gauge the accuracy of our method using varying sized feature 

vectors. The feature vectors are composed of frame 

information from n time steps.  

TABLE I.  CLASSIFICATION ACCURACY VS VECTOR LENGTH 

Vector Length (n-time steps) Accuracy 

1 78% 

2 75% 

3 71% 

4 71% 

5 71% 

 

It seems that using the single time-step as the feature 

vector gives us the best results.  The accuracy plateaus past 

using 3 time-steps as a single vector. Additionally, there is the 

likelihood that the system will quickly jump from friendly to 

hostile depending on a single frame of information. To give 

the robot more confidence in its behavior classification, we 

look at the classification results of multiple frames and sum 

the confidence value of each frame before we make a 

decision. We utilize a state machine to make it difficult for the 

robot to make sudden transitions between hostile and friendly 

behavior.  In Table 2 below we show that this method of 

summing SVM certainty over time works well in improving 

our accuracy.  

TABLE II.  CLASSIFICATION ACCURACY VS NUMBER OF FRAMES USED 

Number of Frames Accuracy 

2 80.55% 

3 81.77% 

4 83.33% 

5 84.35% 

6 84.35% 

 

There is an upper limit to the number of frames we can 

apply in this situation. Too many frames would result in 

having a system that takes too long to judge hostility. 

Additionally, the behavior of the target n seconds in the past 

might no longer be relevant to the robot. For our ROS 

application we used 10 frames. 

B. Position Tracking and Prediction Using Kalman Filter 

Using the Kinect and the ROS API, we were able to track 

the positions and orientations of each joint of a person 

moving in front of the Kinect. We developed a script to 

continuously log this joint information to a text file, allowing 

us to record a person’s movements at a rate of 10 Hz. With 

this program we were able to generate several training sets of 



  

both friendly and hostile behavior.  

  In addition, with slight modifications to our script we were 

able to track the x,y coordinates of a person’s torso to get a 

plot of the person’s location over time (in relation to the 

Kinect). Once again, with the script we were able to display 

either one or multiple paths as seen in Figure 11. 

   
Figure 11.  Position tracking in time 

By feeding this trajectory information into a Kalman filter, 

we were also able to lay the groundwork for basic path 

prediction. The current implementation simply takes the 

person’s velocity at a certain frame and uses it to predict the 

person’s position at the next step. 

  
Figure 12.  Kalman filter path prediction: path (blue) vs prediction (red) 

We tweaked the various parameters(noise, observation, 

state matrix) for the Kalman filter through live trials with the 

Kinect and observed acceptable performance. As seen in the 

figure above (Figure 12) we predict smooth trajectories that 

matches the path history 1 second prior.  We were able to test 

this function live with a simulator PR2(Figure 13). 

  
Figure 13.  Live trajectory generation in simulation with Kinect input 

C. Optimal Bullet Trajectory 

Given a certain trajectory (time + space) of the target, the 

sentry needs to decide when and where to shoot the bullet. 

Indeed the bullets trajectory has to intersect the target one at 

the right time, but we need maximize the probabilities of 

hitting the target, given the uncertainties of the aim. 

We utilize the following planning algorithm: first, we 

sample the target predicted trajectory      , and - neglecting 

the angular uncertainty on the bullet momentum - we 

calculate orientation and time of flight of a rough aim by 

inverting the Newtonian kinematics of the projectile. 

As a second step, we use a Montecarlo method to estimate 

the probability of hitting any other point of the target 

trajectory: for each rough aim needed to hit a certain   i,  we 

sample the random distribution of the bullet          at 

different time t, and using a heuristical probability of hitting 

the target as 
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we obtain the total probability of hitting the target in any other 

instant of its trajectory. 

Doing so, shooting is preferred when the target is moving 

parallel to aim rather than perpendicular. 

  
Figure 14.  For each sample target position      , the system calculates a 

rough aim inverting the Newtonian kinematics of the bullet (red line)  

  
Figure 15.  For each rough aim, the system samples where the bullet would 

land (blue dots) and compares it with the trajectory of the target (red dots) 

VIII. SENTRY MAIN PROGRAM 

A. ROS 

We utilize WillowGarage ROS library to interface with 

PR2: ROS provides foundations for the creation of software 

to control the robot. All our code is written in Python, but 

takes advantage of compiled fast numerical libraries such as 

Numpy, PyKdl and SVM in addition to ROS codebase and 



  

libraries such as OpenNi, ForwardKinematics and 

ArmMovement. 

Visualization of the various components of the project is 

done in RViz, while the simulation of robot physics is 

performed in Gazebo. 

B. Overview of the System 

‘mastermind.py’ is our main node script that controls the 

final logic of the robots and calls the different components of 

the project. It is structured as a state machine, constantly 

tracking and analyzing skeleton tracking stream. Once a 

target is flagged as ‘foe’, the aiming and shooting routine is 

called. The code follows as simple state machine as shown in 

Figure 16. 

  
Figure 16.  State machine used by mastermind.py 

IX. OBSERVATIONS 

In our project, we developed a system to turn a PR2 robot 

into an automatic sentry: we identify the major components 

(target tracking, behavior identification, aiming prediction 

and optimization) and we implemented them using standard 

machine learning techniques. In addition, we explored ROS 

libraries and taken advantage of the functionalities that it 

provides. 

For our project we were conditioned by two elements: the 

first is the fact we were using a real world complex object 

such as the Nerfgun, that is not easily manipulated by the 

robot gripper. Creating a custom frame for attaching it to the 

robot we removed the need special manipulation, simplifying 

the codebase. 

The second aspect is the real time response by the robot: in 

order to track a shoot a moving target, the robot must be able 

to plan and move fast. For this reason we did not rely on the 

standard PR2 motion planning, but we implemented a 

simplified version that can act much faster (but operates in 

more special and controlled case). 

X. FUTURE WORK 

In future research we would like to apply our software to 

the physical PR2 as there are many problems that cannot be 

solved in simulation.  We have solved the major physical 

interfacing issue but the responsiveness of the shoot and aim 

sequence will require testing on the PR2.  

Additionally it would be interesting to pursue other 

algorithms to increase the reliability of our hostility detection 

system. It is arguable that for autonomous weapons, hostility 

detection is much more important than the performance of the 

weapon. A potential solution is to additionally use computer 

vision to use specific markers(hats, uniforms, etc) on a target 

as a secondary basis for hostility. Having multiple method to 

determine hostility will significantly increase the robot’s 

confidence in hostility detection. 
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