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Abstract— This paper describes the application of the PR2
robot as a ’Beer Pong Butler”’, which will identify a ping pong
ball in a cup, pick up that cup, and move it to another location.
We utilize Hough circle detection using OpenCV and an SVM to
detect a ball in a cup. We then use motion planning to perform
the task given the location of the cup containing a ball.

I. INTRODUCTION

Beer pong, also known as Beirut, is a game typically
played at college parties, which involves two teams of two
players each throwing ping pong balls across a table with the
goal of getting a ball into a cup of (root)beer at the other end.
Figure 1, shows the typical set up for a beer pong game.
For our application, we will assume a game played with six
cups on each side, which will be empty for our purposes.

When a ball is successfully thrown into a cup, that cup
must be removed from the game. The beer pong butler will
identify the cup that contains a ball and move that cup away
from play.
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Fig. 1. Typical beer pong setup.

A. Related Work

Willow Garage has implemented a PR2 which responds
to a "Beer Me” app that allows users to request a beer
be brought to them from the fridge. The PR2 navigates to
the fridge, uses handle recognition to open the door, and
object recognition to determine which beers are in a rack in
the fridge. The fridge is modelled using live perception and
data from several sources according to a representative from
Willow Garage. The PR2 uses motion planning, presumably

some type of inverse kinematic solver, to determine the path
of the arm to the beer to be picked up.The PR2 is also
capable of opening the beer bottle. This algorithm provides
the makings of a full service party bot, and our application
attempts to provide additional functionality.

Solems Vision Blog explains how to use Hough transforms
and OpenCV to detect lines and circles on an image of a
guage. HoughCircles is a documented function which takes
the image, the detection method to use, the inverse ratio of
the accumulation resolution to the image resolution, mini-
mum distance between the centers of the detected circles,
two threshold values, and the minimum and maximum radii.
These parameters must be tweaked for different applications.

SVMs are becoming widely used for image classification.
David et al. use SVM on genetic syndrome diagnosis which
requires image classification. The results shown in Table 6
of their report shows a comparison between the error rates
of the SVM to other machine learning algorithms including
7-nearest neighbor, neural network, and naive Bayes. The
results show that SVM has the lowest error rate of the
compared algorithms. Anthony et al. use SVM for land
cover mapping. Their results show high accuracy using
both one-versus-one and one-versus-all approaches, and they
conclude that the choice between the two methods for image
classification is simply personal preference.

From a high level, our approach is to detect the remaining
cups, determine which cup has a ball in it, find the X,Y, and
Z coordinates of that cup in the base_link_frame, and remove
that cup from the formation. This involves learning what a
cup looks like and planning motion to a specified point.

II. PERCEPTION

The most complicated and novel part of our project is
detecting which cup contains a ball. Although this sounds
simple at first, it rapidly becomes complicated when the
possibilities of changing environments, lighting, cups, and
viewing angles are considered.

A. Dataset

To assemble our dataset, we took pictures of formations of
cups using the Kinect. A cup formation is created by placing
six cups in a pyramid shapes and then removing between
zero and five cups. To make sure that our data was faithful
to the data that would be gathered by the PR2, we placed
the Kinect at a height and angle consistent with the PR2’s
technical documents. To simulate real-world conditions, we
made small adjustments to the height, angle, and position of
the Kinect while capturing data, all while varying the lighting



conditions. In some cup formations, one cup holds a ball; in
others no cups contain balls. In total 120 pictures were taken.
Each of these pictures was labelled with a coordinate pair
corresponding to the approximate center of the cup which
contained the ball (if no ball was present, the pair (-1,-1)
was used). The center of the cup was used, because this
would be the ideal point for the robot hand to enter the cup.

50 pictures were reserved for testing and 70 were used for
training. The 70 training examples were sometimes further
split into training and validation groups if the particular
algorithm being tested required such a split. Before splitting
the data, each picture was manually processed to isolate the
cup formation.

B. Tabletop Detection

In order to segment the tabletop from the objects on
the table, we used an existing table segmentation package.
For example, we segment the hands and keyboard from
the table in Figure 2. Although we were successful in
doing so, the resulting pointcloud was not dense enough to
actually determine which cup contained the ball as shown by
Figure 3. To solve this, we overlay the segmented pointcloud
data on the RGB image in order to isolate the portion of the
RGB image that contains the cup formation, Figure 4. This
allows us to use the superior pixel density of the RGB image
to determine which cup contains the ball but provides an easy
way to discard most of the image.

Fig. 2. RGB image taken with Kinect

Point cloud data

Fig. 3.

The purpose of detecting the tabletop and removing it from
consideration is to isolate the pixels which form the triangle
of cups. Although the image segmentation is not fine-grained
enough to detect individual cups, the task of picking out cups

Fig. 4. Point cloud data translated to RGB image

from the RGB image is greatly simplified when the image
can be cropped to a ’blob” which closely follows the cups.
Shown here (clockwise from the right) are the registered
pointcloud, the RGB image, and one result of tabletop seg-
mentation projected onto a two dimensional image. Tabletop
segmentation returns significant clusters of points which
appear above the tabletop surface. In this case, one such
cluster is the hands and keyboard of the person working at
the computer. The cluster is not yet properly aligned with
the RBG image because we have not yet determined which
method of coordinate transform is necessary to transform
from the Kinect’s 3D coordinate frame to its 2D coordinate
frame. Methods attempted include using ROS’s tf, projecting
the 3D coordinates on to the plane of the observer and
rotating that plane, converting the pointcloud to an image
directly using ROS’s CloudToImage, and simply removing
the Z coordinate of each point (most successful, pictured).

C. Hough Circles

The second step in our filtering pipeline is the detection of
individual cups. Although table segmentation provides a blob
which contains the cup formation, this blob also includes
many unnecessary pixels which can be confusing to the ball
detection algorithm. In order to further narrow our search,
we use OpenCV’s Hough circles to exploit the geometry of
the cups.

Unfortunately, slightly varying the parameters for the
Hough circles function results in the generation of wildly
different circles. Specifically the minDist (minimum dis-
tance between the centers of detected circles), minRadius
(minimum radius of the detected circles), and maxRadius
(maximum radius of the detected circles) are difficult to
tune by hand, because they are so dependent on the exact
position and angle of the Kinect sensor. Attempts to make
these parameters simple functions of the size of the image
failed to capture the relatively small variances in our dataset.
Even when tuned correctly, the circle detector frequently
recognizes the shadow of a cup as a circle and ignores
furthest cup because the aperture of that cup appears to be
an oval from the camera’s perspective.

It is at this point that we decided to apply machine
learning in order to discriminate between the circles which
represented actual cups and those which were merely random
coincidences. The Hough Circle step of the pipeline takes
a brute force approach to the parameter-tuning issue and
simply varies each parameter slightly in an empirically



determined range. This results in many accurate circles, but
also many misses.

From our 70-image training set, we generated approxi-
mately 13,000 individual circle images by running the Hough
circle function with various parameters. Because this was far
too many images for us to manually label, we selected 500
random images and labelled only these. Circles were labeled
as not a cup, Figure 5, a cup, Figure 6, or a cup containing
a ball, Figure 7.

Fig. 5. Individual circle without a cup

Fig. 6. Individual circle with a cup
-
Fig. 7. Individual circle with a ball

We considered three distinct algorithms to determine
which cup (if any) contains a ball. Although none of the
algorithms performed incredibly well, the “direct ball detec-
tion” algorithm provided the best results on the testing set.

Our first approach was to determine the images that were
in fact images of cups, and then find which of those contained
the ball.

D. Cup Detection

We considered a number of alternatives for using ma-
chine learning to bolster cup perception. Although OpenCVs
Hough Circles do a good job of delimiting cups when
properly tuned, as shown in Figure 9, they can perform
erratically when the parameters are a bit off. Slight changes
in environment, lighting, height, or angle can result in
incorrect or incomplete labelling of cups as seen in Figure
8.

Our first idea was to implement a combined HMM and
SVM to determine whether we had properly identified the
cups. The problem naturally lends itself to an HMM, because
there are a small number of discrete states (configurations
of the cups), and the game naturally transitions from one
state to another. Even better, the transition probabilities are

Fig. 8. Good Hough Circles

Fig. 9.

Bad Hough Circles

certainly not uniform and can be determined experimentally
simply by throwing balls into cups. Although we were
very excited about this approach, it was abandoned due to
time constraints. Because each unique configuration would
require a custom SVM to be trained, there would have
to be 6+6+15+15+20+1+1= 64 different SVMs. Gathering
sufficient data to train and validate this many SVMs would
not be practical.

1) SVM-based Cup Detection: The simplest cup classifier
simply looks to determine, for each drawn circle, if that circle
represents a valid cup. Therefore this classifier considers only
one cup at a time. The features (all drawn from the input
image) are the width, height, number of pixels, the average
red value of the pixels, the average green value of the pixels,
and the average blue value of the pixels. These features
represent a simple intuitive grouping of the parameters used
to describe a picture.

We used SVMLight to train a classifier using this informa-
tion. First the training data (the 500 labelled circle images)
was normalized so that the classifier would not be inherently
biased. An extreme example of this would be a training
set composed of 90% positive and 10% negative examples;
the classifier could simply label everything as positive and
achieve 90% accuracy! Our labelled images contained 203
negative examples and 297 positive examples, so we used
203 of each. These 406 images were shuffled and split into
five groups. Using these groups we performed five-fold cross-
validation in order to determine the best trade-off between
training error and margin (c value) for the classifier as shown
in Figure 10. With the appropriate ¢ value selected, the final
classifier was trained using all 406 examples.
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Fig. 10. Cup Detection Performance

This classifier determines which circles (generated by the
Hough circle function) qualify as cups, but it does not solve
the problem of determining which cup contains the ball. This
is performed by a simple scan of the cups for orange pixels.
This process introduced another parameter to tune; the cutoff
for the minimum number of orange pixels that could qualify
as a cup (recall that some configurations of balls contain one
ball and others contain none). To select the proper value for
this parameter, the training set (70 images of between one
and six cups, sometimes containing a ball) was evaluated
using a number of different parameter values. Each image in
the training set was manually labelled with a point indicating
the approximate center of the cup containing the ball (for
cup formations not containing a ball (-1,-1) was used). For
each of these images, the Hough circles function was used to
generate a number of circle images. Then the classifier was
applied to find the circles which corresponded to cups. The
number of orange pixels in each of the cups was counted, and
the cup which contained the largest number of orange pixels
was selected. If the number of pixels present was greater than
the threshold, the classifier predicted a ball at that location.
If not, then the classifier predicted no ball in the formation.
After repeating this process for each parameter value, the
value which generated the greatest accuracy was selected
(see figure 11).
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Fig. 11. ROC Curve

2) SURF-based Cup Detection: The second classifier
also attempts to identify individual cups, but took a very
different approach to the process. SURF (Speed Up Robust

Features) was used to categorize circles as either cups or not.
Because SURF works by identifying keypoints in an image,
computing the descriptors for those keypoints, and then
comparing those descriptors to the descriptors calculate from
the keypoints of another image, it is most similar to KNN. In
order to leverage the previously-labelled dataset, we created a
classifier that takes a circle image and computes its similarity
to a collection of known cup images using SURF. The
smallest ’distance’ found this way is chosen to represent the
image. As before, another parameter is introduced: the largest
acceptable ’distance’ which still qualifies a circle image as
a cup. Once again, this parameter was varied to determine
the best value to use. In order to avoid contaminating the
results, five-fold cross-validation was used. The 297 positive
examples were split into five groups. For each of these five
groups, the other four groups were used as the database
of known cup images. The leftover group was combined
with an equal number of randomly selected negative images
(approximately 60 of them) and run through the classifier.
As above, the accuracy of the classifier was determined for
various threshold values, and the results were averaged across
all five splits. The final classifier used the best threshold
value, as well as a known cup database consisting of all 297
labelled positive examples.

As with the previous classifier, the second classifier only
handles the task of task of determining which circles contain
cups. The same approach described two paragraphs above
was used to translate this into a classifier that can determine
which cups contains a ball (see figure 11).

3) Ball Detection in Unfiltered Circles: Since both of the
above methods simply add a layer of abstraction on top of
simple ball detection, it made sense to try the ball detection
on its own to make sure that the more complicated methods
actually add value. In the usual way, we used the Hough
circle function to generate cup images and tried a number
of parameter values to determine which worked best on the
training set. We found that this method was less effective
than the two above methods, confirming our intuition that
some circles contain orange pixels that were not part of a
ball in a cup.

E. Direct Ball Detection

1) SVM-based Ball Detection: After attempting to first
find the circles that contain cups and then determine from
among those the cup which contains the ball, we realized
that it might be more effective to simply use a classifier to
find the ball directly. After all, the Hough circles already did
much of the work in separating the cups from the rest of the
image, and adding the additional requirement that an image
has to contain a ball to be a positive example creates new
features. Specifically we added the number of orange pixels
in the image as a feature in the classifier. As detailed in
the SVM-based cup detection section above, five-fold cross
validation was used to determine the best c value.

Much like with the SVM-based cup detection above, we
then had to determine a threshold for ball detection. Once
again, we followed the methodology described in the second



paragraph of that section. This time the threshold was placed
on the output of the classifier generated by the SVM instead
of the count of orange pixels. The threshold which produced
the highest accuracy was selected for this classifier.

2) SURF-based Ball Detection: We also attempted to
perform direct ball detection using SURF. However, this
failed due to the incredibly small size of the ball images
(typically 34x34 pixels). OpenCV’s SURF function simply
could not find keypoints on these images.

F. Results

Classification Performance
Ball Detection in Unfiltered Circles
SVM Direct Ball Classification
SVM Cup Classification

SURF Cup Classification
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Fig. 12. Results for classification methods

Our ultimate evaluation metric was, of course, perfor-
mance on the 50 reserved cup formation images. Although
none of our classifiers performed exceptionally, direct clas-
sification of cups with balls using an SVM was clearly the
best method. Upon reflection, this is the approach we should
have taken initially; by starting with a simpler and better
classifier we could have avoided much unnecessary work.
Furthermore, the addition of more features to this classifier
could only improve its performance.

Our attempts to isolate individual cups were not totally
futile. It is quite clear that even methods which are only
moderately successful at distinguishing cups from non-cups
(the SVM and SURF based classifications) still manage to
weed out some non-cups that confuse the ball detection
formula when run on unfiltered circles. Although the SVM
direct ball classifier already incorporates all of the features
from the SVM cup classifier, it may be possible to improve
it by incorporating the SURF-based classifier.

III. MOTION PLANNING

The overall goal of the motion planning is to remove
the cup, which was determined to contain a ball, from the
cup arrangement. To accomplish this goal, a model of the
situation was created in gazebo and inverse kinematics were
used to plan the right arm’s path. The motion plan assumes
that the PR2 is positioned in front of the cup arrangement
as shown in Figure 13 with its arms positioned straight in
front of the PR2 body and the grippers pointed upwards at
an angle. The motion plan uses only the right arm of the
PR2 to complete the goals.

Fig. 13.  PR2 completing motion task in an empty world.

A. Gazebo Models

The beer pong scene was modelled in Gazebo using
two different object types. The first was the default table
object. The second was a plastic cup object to represent the
commonly used red plastic SOLO cups used in beer pong.
The plastic cup model was sourced from the Google 3D
Warehouse. An xml file was created to allow the object to
be spawned in the Gazebo world. The cup object had to be
scaled in order to fit the scope of the gazebo world. The cup
was scaled to 4% of it’s original size to be the approximate
size of a real cup with respect to the PR2 and the table in
the Gazebo world. Originally the collision map was set to
be the same size as the visual cup in gazebo. However, as
will be described in the inverse kinematics section below,
that size collision map was not ideal. The collision map for
the object was shrunk to 3% of it’s original size compared to
the visual cup which was scaled to 4% of it’s original size.
By making the collision map smaller, the gripper was able
to move closer to the cup object and inverse kinematics was
able to successfully be solved.

The cup objects were spawned into the gazebo world using
the following coordinates as seen in Figure 14:

Cup 0 (0.7, 0.15, 0.52)

Cup 1 (0.7, 0.0, 0.52)

Cup 2 (0.7, -0.15, 0.52)

Cup 3 (0.83, 0.075, 0.52)

Cup 4 (0.83, -0.075, 0.52)

Cup 5 (0.96, 0.0, 0.52)

e

Fig. 14. Cup arrangement in gazebo

These coordinates were chosen because they mimic the
real set up of a six cup game, the cup edges do not touch, and
the cups do not collide with the table object. By spawning
the cups such that they do not touch any other object, the
cups are prevented from flying off in a collision.

B. Gripping

Several gripping techniques were explored in the search
for the optimal approach. The two main techniques consid-



ered were: gripping one side of the cup and expanding the
gripper inside the cup. In the first method, the grip would be
positioned such that it is point down vertically at the edge
of the cup. The gripper would also be positioned with one
side of the gripper on the inside and outside of the plane
made by the side of the cup. The gripper would be opened
and moved down so that the grippers are on either side of
the cup. The gripper would then close and raise the cup
away from the arrangement. This method would require the
gripper to be positioned fairly accurately above the center of
an edge. Furthermore, this method would be difficult to use
in a ten cup set up because it would be hard to get to the
edges of the middle cup.

The second method, the gripper would be moved so that
it is was pointing vertically over the center of the cup. The
gripper would then be lowered into the cup and opened such
that it applies a constant pressure to the interior sides of the
cup. The gripper would be opened a set distance which would
be determined through trial and error using the real PR2. The
cup would then be lifted up away from the arrangement with
the gripper held open to secure the cup. This method would
work for either inner or outer cups as well as cups of different
shapes and sizes. Additionally, this method would still work
if the gripper was not placed exactly at the center of the cup.
The second method was chosen as the final gripping method.

C. Inverse Kinematics

The overall goal of the inverse kinematics is to move the
right arm of the PR2 to complete the following tasks:

1) move the gripper such that it points down over the
center of the cup

2) move the gripper down into the cup

3) spread the gripper to secure the cup

4) move the gripper up and away to remove the cup from
the arrangement

The x,y,z coordinates of the cup we want to move are
taken from perception and transformed into the “’base_link”
coordinate system from the Kinect coordinate system using
the tf package.

The first step was to insure that the PR2 could successfully
complete the motion without violating joint limits in an
empty world as seen in Figure 15.

Fig. 15. PR2 completing motion task in an empty world.

After the same movements were confirmed to possible
with the table in gazebo, cup 1 was spawned into gazebo and
the inverse kinematics was again repeated. However, with the
cup in the gazebo, the inverse kinematics failed. The issue

was with the collision map of the cup. The collision map
was shrunk to be slightly smaller than the visual cup. By
shrinking the collision map, the gripper could move closer
to the cup and the inverse kinematics were successful. The
collision map size was tuned to be small enough to allow
inverse kinematics to solve but large enough such that the
gripper would not go straight through the visual cup. When
the collision map was too small, the arm went straight
through the cups and collided with the table as shown in
Figure 16.

Fig. 16. Effects of too small of a collision map

Finally, the motion plan was executed in simulation with
the full cup arrangement. We were not able to use the real
PR2 because it was not operational. The gripping motion
was not able to be performed in gazebo because the physics
of gazebo is not ideal. However, we are confident that the
designed gripping method we decided on would work if we
were able to calibrate it on the real PR2.

The PR2 first moves the gripper over the cup which will
be moved as seen in Figure 17. Next the gripper would be
spread to secure the cup in the real world scenario.

Fig. 17.

PR2 gripper over cup 1

Finally, the PR2 moves the gripper away from the robot
while maintaining control of the cup shown in Figure 18.

D. Other Considerations

We began by working with pick and place, but this
algorithm does not work for our application because we are
not picking up a stand alone object.



Fig. 18. PR2 gripper moved away from arrangement

IV. CONCLUSION

The problem of identifying a ball in a formation of cups
proved to be surprisingly difficult. Small changes in angle,
lighting, and arrangement confounded naive approaches. Fur-
thermore, the presence of random objects made the challenge
even greater. Even after isolating the cup formation using
tabletop segmentation and singling out likely areas using a
Hough circle function, our best classifier only achieved 83%
accuracy on our test set. The classifiers we tried, in order
of accuracy on the test set, were ball detection on unfiltered
circles, SURF cup classification, SVM cup classification, and
SVM direct ball classification. Our hope is that a real robot
would be able to adjust its position and the angle of the
Kinect slightly in order to gather multiple images and make
a more informed decision about the presence of a ball.

The motion planning was mostly successful given that it
was entirely run in the simulator. The inverse kinematics
solver was sufficient to move the gripper to the designated
cup in the correct orientation and then away from the cup
arrangement. However, without the real robot we were unable
to complete the gripping action. We are confident however
that with the real robot the gripping method selected would
be successful.
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