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Abstract— Currently, the aerial robot is 

controlled by a physical controller the operator 
interacts with. Camera input into the aerial bot 
is used for object classification and avoidance. 
The focus of this project is instead to have the 
quadrotor autonomously track and follow a 
remote-control car, resulting in effectively no 
operator interaction. Based on visual input 
from its downward-facing camera, the aerial 
robot attempts to hold the car in its field of 
view and at a manageable distance by altering 
its horizontal and vertical translation & 
rotation. Both the aerial robot and the remote 
controlled car operate in physical areas lacking 
obstacles, such as a field or empty parking lot, 
so as to minimize and effectively eliminate any 
obstacle avoidance problems. This project 
examines the creation of an efficient end-to-end 
system to approach this problem (vision, 
analysis, and control), in addition to two types 
on controllers - reactionary and reinforcement 
learning.

I. INTRODUCTION

Tracking and pursuing a vehicle is a real-world 
task assigned to Unmanned Aerial Vehicles. The 
potential of setting a robot after a target and have it 
follow, catch up to, or simply observe an object is very 
useful for a number of reasons, simplest of all being 
generally easier control from an operator’s standpoint. 
Even if the aerial bot simply follows a land vehicle 
also controlled by the operator it allows the operator to 
work and focus on two dimensions instead of three.

There are two different approaches examined 
in this project. First, a simple 'reactionary' controller 
that, given a single frame of video input, reacts 
proportionally to the relative location of the car in the 
image frame. Rotation is based on the horizontal 
location of the car in frame, whereas speed of the aerial 
bot is determined by an estimation of nearness. The 
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estimation of distance between the car and the aerial 
bot is done by number of pixels in the image tagged as 
‘car’ (high pixel count -> car is near). The second 
controller is based on a policy learned by 
reinforcement learning. The scene is parsed into a 
binary string representing the state; it is then looked up 
in the policy table to find which action should be taken. 
Based on this policy the aerial bot can react in a 
number of ways, including altering  speed, rotation, 
and horizontal translation. In both approaches, vertical 
height of the car is initialized on startup, and the aerial 
bot (currently) continues to operate on the height plane.

With either approach, the bot is able to 
consistently maintain a visual of the land vehicle. The 
is due, largely, to the aerials bot’s ability to rotate 
quickly without necessary forward motion (unlike the 
land vehicle, which has a defined turning radius). 
Given this ability, the land vehicle is not able to out-
maneuver the aerial bot, and should it succeed it 
making it outside the aerial bots field of vision, it is not 
sustainable. 

One problem with the ‘reactionary’ approach is 
that there is no real memory of the land vehicles 
location. Should the land vehicle travel behind an 
object, the aerial robot with remain still, hovering and 
scanning the scene until the land vehicle re-appears. 
[For this project, we have defined the operating 
environment to be one devoid of obstacles, allowing 
the aerial bot can fly freely. The ability for the land 
vehicle to ‘hide’, however, is an interesting topic that is 
also examined.] By encoding previous actions / 
locations into the state-space of the reinforcement 
learning algorithm, the aerial robot can learn to 
precisely deal with this problem.

The second main problem faced is complexity 
and design. The reactionary controller's actions are 
based on hard-coded functions. Improving the 
reactionary controller requires the designer to craft 
complex, conditional functions. Although the bot will 
do only what it is told, this approach results in a large 
amount of complicated code rather quickly, where as 
the reinforcement controller does not. After an initial 
state-space and action-space design, the Air Robot's 
policy can be quite complex and function in ways not 
obvious to a human designer.
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A. RELATED WORK:
No projects were found that closely resembled 

this, however some do exist along the same vein.
An aerial robot following a ground robot (that was not 
necessarily attempting to escape it) can be viewed 
here: http://youtu.be/WKnNSUbI-mk . A faster moving 
land robot (with the intent to escape) poses challenges 
not present in the above, linked, project.

II. EXPERIMENTAL SETUP

Currently, all work has been done in simulation (due 
to a non-functioning robot). A large amount of a time 
has therefore been devoted to setting up the simulation 
environment  in  a  practical,  applicable  way,  that  is 
conducive to how the aerial  bot  physically acts.  This 
includes  creating  and  scripting  (in  a  ‘visual’  script 
language)  a  custom map  in addition  to  changing the 
architecture  of  how  existing  aerial  bot  programs 
communicate (vision, analysis, and control). Setting up 
the simulator itself was very work intensive, requiring 
many files, programs, and packages to be downloaded 
and compiled to run.

A. Environment 
The simulated environment (map) was created 

off a supplied ‘test’ map called 
‘AirRobotTestMap.ut3’. This map was edited and its 
launch settings altered so that it would launch with 
UPIS server that initializes memory for video feeds 
and control sequences to be shared between the 
simulation and the Air Robot control code. This map is 
a strong base to work in as it represents our operating 
environment quite well -  an outdoor flat field on a 
clear, sunny day, devoid of obstacles (for the aerial 
bot). Subsequent versions exist with obstacles for the 
ground vehicle to hide behind.

B. Land Vehicle:
While running the simulator creates an 

AirRobot object in the simulated world, it does not 
have the ability to create a ground vehicle. By further 
altering the map described above, a realistic, fully 
functioning and controllable car was added to it. This 
is the object the aerial bot will track and follow. It 
functions similarly to a physical car, including how it 
turns and accelerates. One problem with adding the car 
to the simulation environment is that it does not stand 
out vividly from the environment, making perception 
difficult. The map was therefore scripted further to 
make the car stand out visually, changing its color 
upon spawn to a bright pink (a color chosen to stand 
out out well in the real environment/on the aerial bots 
camera).  A filter was then coded so that any frame of 

video that aerial bot takes filters all non-land-vehicle 
colors.

As an amendment to this project, perception 
was examined with a logistic classifier and a belief 
propagation (BP) network. Noted after the conclusion, 
the BP system results are quite similar to the current 
simulation – the car is overlaid with with a colorful 
estimation of its location while all other areas of the 
frame are dark. Working with this logistic classifier / 
BP setup, real-world perception can be handled 
efficiently and effectively, requiring only minor 
modifications to work in conjunction to this simulated 
perceptions setup.

C. Visual Input and Control Structures:

As previously described, the initialization 
work of the map and simulation environment has been 
completed. Both the car and the aerial robot are 
independently controllable in the environment, the car 
is scripted to stand out visually, and the AirRobot has 
access to its camera feed. The next step is to create the 
coding structures for image capturing, analyzing, and 
controlling based on this feed.

The original structures supplied with the simulator 
were ‘PayloadViewer.c’ and ‘controller.c’. The Payload 
Viewer  simply  displayed  and  stored  the  most  recent 
frame of video in memory. The Controller would move 
the aerial bot based on a constant, hard-coded loop of 
instructions.  To  implement  perception  based  control, 
therefore,  the  most  up-to-date  frame  was  read  from 
memory;  it  was  analyzed  by  the  analyzer;  a  control 
sequence based on this analysis was saved to memory; 
finally the control sequence was read and acted on by 
the controller. Visually:

http://youtu.be/WKnNSUbI-mk


This process is not optimal. Complex 
interactions occur between these programs which all 
function independently. Each program (PayLoad 
Viewer, Analysis, & Control) all have their own sleep 
timers, their own overhead, and have to be synced with 
the other two programs. Problems with communication 
arise where Analysis could re-read the most recent 
image if no new one has been saved, effectively 
making the aerial bot act twice when it should act once. 
Similarly, the controller could re-read an old control 
sequence multiple times if analysis is not fast, or 
missing one is Analysis is too fast. Simply put, the 
initial process architecture would not work.

The solution to this problem was to instead combine 
all the sections into a single file, a single master 
program. In the new setup, the overheads of 
saving/reading files & images do not exist, and only 
one sleep timer exists. Additionally, more information 
can be passed between the stages, such as Analysis 
passing a multi-sequence chain of actions to the 
controller. This ‘master’ program is more efficient and 
faster than the old architecture while possessing all the 
same abilities and more.

III. APPROACH

A. Reactionary Controller
1. Design

Given a frame of video, the controller code 
controls the aerial bot in a reactionary process. The 
process is based on the location of the land vehicle 
within the quadrotor’s field of view. Two methods of 
movement are utilized by the aerial bot: Rotation, and 
Forward / Reverse translation. The operating height is 
initialized on startup and the aerial bot remains at that 
level throughout operation. Rotation is a function of 
the horizontal location of the land vehicle within the 
aerial bots field of view. The formula being:

Rotation Action = 2 * ( x_loc% -0.5)
Forward/reverse translation speed is a function of the 
car's distance from the aerial bot. The distance metric 
used is based on number of car pixels observed 
(directly related to the distance of the bot). The 
formula used is:

Speed = (Max_Close-pixcount) / Max_Close
where Max_Close is the distance in pixels the Air 
Robot should stop moving closer. A pixel count beyond 
Max_Count results in a negative speed, moving the Air 
Robot backwards.

2. Advantages

The advantages of this controller is that it 
is clear what the aerial bot is doing in all states. 
This design is easily readable and adaptable (to a 
point). Possibly the most advantageous aspect of 
this approach is that the action space is not 
discretized - actions can take on rotation or speed 
values anywhere from [-1, 1]. Rotation and Speed 
actions can also easily be calculated independently 
and then superimposed to make complex actions.

3. Limitations

This approach is limited, however, by the 
designer. The functions are chosen by trial and 
error to find valid action performance, and are 
based heavily on the developer's thought process 
and expectations. After a base level of simple 
action functions, improvements to this controller 
become difficult. Rarely used yet complex 
conditional functions must be included to produce 
improvements in edge-cases. Initial ease of 
implementation is followed by a series of complex 
conditional actions for specific state occurrences. 
The code is no longer easily understandable or 
adaptable.

B. Reinforcement Learning Controller
1. Design

The general design of the reinforcement 
learning controller follows: 

• Design a state and action space that the Air 
Robot will operate in.

• Randomly act these actions in the simulator 
while the ground vehicle moves.

• Record state transitions and average rewards 
based on these observation points.

• Complete value-iteration reinforcement 
learning to generate a policy for the Air Robot.

• In live execution, the Air Robot classifies its 
current state and looks up the action for it from 
the learned policy.

2. Simple State and Action Space

A simplified state and action space was 
created to take advantage of a low amount of 
required training data. This included a state space 
of : 3 depth positions and 3 frame positions 



represented as 4 bit binary string. The action space 
included 3 speeds and 5 rotations. Due to this limited 
space, the training data required to fully examine the 
space is 2048 training points (calculated by 8 actions * 
2^4 bits for start state * 2^4 bits for result state), an 
amount that is perfectly reasonable to obtain.

The benefit of this limited controller is that it 
is a strong base for future learning. It is easy to gather 
an excess of training data, and is easily extendable to 
include a more complex state space or action set. For 
the most part, this set up is directly comparable to the 
reactionary controller, in that it utilizes a similar action 
space (though not discritized as it is here). By 
comparing this controller with the reactionary one, and 
their performance, one design can be chosen depending 
on desired results.

3. Complex State and Action Space

In addition to the simplified reinforcement 
learning controller, a theoretical reinforcement learning 
controller was also designed. This design differs in 
that:

• State space now include 3 distance states, 3 
horizontal percentage of frame states, 3 'past' 
states (previous horizontal percentage), and 3 
relative velocity states.

• State space is represented as an 8 bit binary 
string.

• Action space now includes 3 speed options, 5 
rotation options, and 2 horizontal translation 
options.

The result of this design is that now the state space 
fully encodes both the aerial bot's state and the ground 
vehicle's state. By looking at the aerial bots past 
rotation, as well as the ground vehicle's current 
horizontal position in the frame, the state space 
encodes the car's translation perpendicular to the air 
robot's line of sight. This information tells the bot if the 
car is moving to the left or the right, and how fast. By 
keeping track of the relative velocity between the car 
and the air robot, the state space encodes the car's 
translation parallel to the air robot's line of site. This 
information tells the bot if the car is coming towards or 
away from the bot. As this state space encodes how the 
ground vehicle is moving in relation to the Air Robot, 
this set up is extremely powerful and will produce a 
precise, smarter policy. Additionally, this  complex 
setup includes more actions to fully utilize  the range 
of actions available to the physical aerial bot.

This setup was not used, however, simply 
because of the massive amounts of training data 
required. For 10 actions * 3^4 initial states * 3^4 
resulting states, a total of 65,610 data points are 
required to observe the entire space a single time. For 
this application the required training data is far too 
great, however this setup provides a theoretical near-
optimal design.

 IV. RESULTS

Both the reactionary controller and the 'simple' 
reinforcement learning controller were implemented for 
this  project.  Both  achieved  comparable  qualitative 
results by observation, following the ground vehicle in 
simulation  for  an  extended  period  of  time.  The 
reactionary  controller  ultimately  outperforms  the  RL 
controller  at  this  stage  in  development  as  it's  action 
space is not descritized (a key benefit of the reactionary 
controller).

Quantitative results are in agreement with this 
finding.  The controllers  were evaluated based on the 
number  of  frames  in  which  the  ground  vehicle  was 
'lost',  or  not  in  frame,  for  a  given  run  of  a  timed 
simulation 500 frames in length. This evaluates both the 
controller's ability to keep the car in frame, as well as 
its  ability  to  re-find  the  car  when  lost.  The  ground 
vehicle  was  human  controlled,  and  driven  between 
sequential way-points to limit driver-bias.

The reinforcement learning controller lost the 
ground  vehicle  an  average  of  84  frames  out  of  500 
frames. The data for three runs are presented below.
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The  reactionary  controller  lost  the  ground 
vehicle an average of 46 frames out of 500 frames. The 
data for three runs are presented below.

V. CONCLUSION

The result of this project is the creation of a 
complete, end to end, system for vision-based action of 
the  aerial  bot.  Additionally,  multiple  controllers  have 
been  examined,  implemented,  and  tested  in  various 
forms.

The creation of  multiple  controllers  has  had 
interesting  results.  The  reactionary  controller  out 
performs current reinforcement learning controllers in 
tests  for  numerous  reasons.  The  first  is  action  space 
discritization.  The  reinforcement  learning  controller 
relies  on  a  finite  number  of  actions  while  the 
reactionary  controller  is  unlimited.  Even  alternative 
learning algorithms like Value Function Approximation 
can not solve this problem - the action space must still 
be discritized.

While action space discritization is a problem 
for the reinforcement learning controller, ultimately the 
reinforcement  learning  controller  is  expected  to 
outperform  the  reactionary  controller.  The 
reinforcement  learning  controller  is  operating  on  a 
severely limited action space, state space, and number 
of training data points. As any one of these increases, 
large  improvements  in  the  operation  of  the  RL 
controller  will  be  seen.  The  implementation  of  the 
reinforcement learning controller is in its infancy - there 
is room for improvements in nearly all  aspects of its 
operation, where as the reactionary controller is at its 
functional  limit.  Additional  effort  put  into  the 
reactionary controller will have limited improvement on 
its  operation,  and  will  increase  code  complexity 
noticeably.  Through the examination of both types of 
controllers  -  their  development,  improvement,  and 
results  - it  is  concluded that,  for  any implementation 
beyond the basic,  a  reinforcement  learning controller 
should be implemented between the two.

VI. AMENDMENT: PERCEPTION

As previously noted, the perception system of 
this setup was expanded to use a logistic classifier and 
belief propagation (BP) network. Coded in simulation, 
the  ground vehicle  was  coated  in  a  vivid  overlay to 
make perception easier. In the physical world, however, 
this  technique is  non-functional.  It  would require  the 
ground vehicle to be similarly coated in a visually vivid, 
unique  color  and  remain  under  constant  lighting 
conditions. Should the color not be unique, color 'noise' 
from  other  objects  would  influence  perception.  The 
ground  vehicle  traveling  under  different  light 
intensities/sources  would cause  its  perceived  color  to 
change,  again  making  this  approach  to  perception 
difficult in the physical world. In an effort to deal with 
these  problems,  perception  was  redesigned to  not  be 
purely  color  based.  The  perception  features  were 
instead  learned  by  a  logistic  classifier  and  resulting 
weight  set  fed  through  a  BP network,  resulting  in  a 
robust, accurate visual perception system.

A. Complex Environment
The  logistic  and  BP classifier  was  initially 

trained  on  data  taken  from a  'complex'  environment. 
This environment was an indoors robotics laboratory. 
Due to the similarity between the ground vehicle and 
spare parts from other robots and experiments, should 
the  classifier  strongly  identify  the  vehicle  in  this 
environment,  it  can  be  extended  to  operate  in  its 
simpler,  expected, operating environment of the ground 
vehicle outdoors. Training in the complex environment 
raises  the  confidence  that  the  perception  would 
correctly classify the car, and only the car, in outdoors 
environment  where  other  metallic  objects,  or  even 
objects with wheels, might appear unexpectedly and not 
be represented in the outdoors train/test set.

1. Logistic Classifier

Trained  on  'complex'  data,  the  logistic 
classifier achieved accuracy rates of 83.0% . Displayed 
below, the first image from the left is the original scene. 
The  second  image  displays  the  sign  of  each  area's 
classification,  white  for  positive,  black  for  negative. 
The third image is a superposition of the two; areas in 
the  image  more  strongly  black  or  white  show  the 
confidence of that classification. As can be seen, the car 
is  largely  colored  bright  white,  indicating  a  strong 
confidence in its (correct) classification. Other areas of 
the image, however, are also colored while. This noise / 
misclassification is  one of  the  items  the  BP network 
aims to correct.
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2. BP Network and Classification

The goal of the BP classifier is to clean the 
results of the logistic classifier. Functioning optimally, 
the  output  from the  BP classifier  removes  erroneous 
positive  classifications  while  extending  the  correct 
classification  of  the  ground  vehicle  to  the  ground 
vehicle's correct shape. The BP network is a series of 
interconnected nodes, similar to artificial neural net. By 
pumping each node the output of the logistic classifier, 
each node builds up its own potential until in meets a 
defined threshold. Once that threshold is reached, the 
node fires,  increasing the potential  of  its  neighboring 
nodes.  The  image  pixels,  then,  are  classified  by  the 
rate/number of times they fire; a higher firing is more 
confidently positively classified. By altering how these 
nodes interact, when they fire, and other parameters, the 
BP network can effectively remove all noise from the 
input image, and extend the classification of the car to 
solely the bounds of the car.

Running  the  BP  classifier  in  the  complex 
environment, a recall rate of 94% and a precision rate of 
51%  were  achieved.  As  can  be  seen  in  the  below 
images, the resulting classification (right) is a cleaned 
version of the initial  (left).  Less erroneous points are 
misclassified, and the car's classification 'bubble' more 
accurately represents the car's true shape.

B. Simple / Expected Operating Environment
As expected,  the  logistic  and  BP classifiers' 

parameters  could  be  precisely  extended  to  the  more 
simple,  expected  operating  environment.  The  ground 
vehicle is expected to operate outdoors, either on grass 
or  on  open  blacktop  pavement.  Using  the  same 
parameters (downsampling rate, feature patch size) the 
logistic classifier achieved an accuracy rate of 88.6%, 
well above that of the complex environment. As can be 
seen below, however, noise still exists in the data even 
at this higher accuracy, and can be filtered out by the 
BP system.

The  results  of  logistic  classifier  further 
increased  the  precision  of  the  BP  classifier  results, 
achieving (on average) a 99% precision rate and 11% 
recall rate. Although recall is a low in this setting, the 
previously described controllers are  dependent  on an 
accurate location of the car, which this does quite well. 
It dramatically reduces noise in the data while keeping 
relevant  car  data  intact  (or  even  enhancing  it).  This 
functionality uses the exact same node parameters as 
the 'complex' lab setting, showing that this BP design 
correctly identifies the car (and only the car) in both 
the lab and outdoors setting; a quite powerful ability.

C. Final
The use of a logistic classifier in conjunction 

with a belief propagation network creates an accurate 
and robust perception system for identifying the ground 
vehicle. Not purely based on color, it provides distinct 
advantages over the base perception used in simulation, 
and promises greater ability to identify the car and only 
the car. The fact that the same BP network can be used 
for  both  indoor  and  outdoor  environments  without 



alteration  means  that  it  has  rather  few  weak  points, 
functioning well in a wide range of environments and 
operating  conditions.  By  removing  noise  while 
preserving or enhancing the correct  data,  it  is  a very 
accurate  and  useful  system.  Paired  with  the 
aforementioned  control  code,  a  complete  end-to-end 
system for finding and following a ground vehicle with 
the aerial bot has been created and examined.
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