

Abstract— Currently, the aerial robot is

controlled by a physical controller the operator
interacts with. Camera input into the aerial bot
is used for object classification and avoidance.
The focus of this project is instead to have the
quadrotor autonomously track and follow a
remote-control car, resulting in effectively no
operator interaction. Based on visual input
from its downward-facing camera, the aerial
robot attempts to hold the car in its field of
view and at a manageable distance by altering
its horizontal and vertical translation &
rotation. Both the aerial robot and the remote
controlled car operate in physical areas lacking
obstacles, such as a field or empty parking lot,
so as to minimize and effectively eliminate any
obstacle avoidance problems. This project
examines the creation of an efficient end-to-end
system to approach this problem (vision,
analysis, and control), in addition to two types
on controllers - reactionary and reinforcement
learning.

I. INTRODUCTION

Tracking and pursuing a vehicle is a real-world
task assigned to Unmanned Aerial Vehicles. The
potential of setting a robot after a target and have it
follow, catch up to, or simply observe an object is very
useful for a number of reasons, simplest of all being
generally easier control from an operator’s standpoint.
Even if the aerial bot simply follows a land vehicle
also controlled by the operator it allows the operator to
work and focus on two dimensions instead of three.

There are two different approaches examined
in this project. First, a simple 'reactionary' controller
that, given a single frame of video input, reacts
proportionally to the relative location of the car in the
image frame. Rotation is based on the horizontal
location of the car in frame, whereas speed of the aerial
bot is determined by an estimation of nearness. The



estimation of distance between the car and the aerial
bot is done by number of pixels in the image tagged as
‘car’ (high pixel count -> car is near). The second
controller is based on a policy learned by
reinforcement learning. The scene is parsed into a
binary string representing the state; it is then looked up
in the policy table to find which action should be taken.
Based on this policy the aerial bot can react in a
number of ways, including altering speed, rotation,
and horizontal translation. In both approaches, vertical
height of the car is initialized on startup, and the aerial
bot (currently) continues to operate on the height plane.

With either approach, the bot is able to
consistently maintain a visual of the land vehicle. The
is due, largely, to the aerials bot’s ability to rotate
quickly without necessary forward motion (unlike the
land vehicle, which has a defined turning radius).
Given this ability, the land vehicle is not able to out-
maneuver the aerial bot, and should it succeed it
making it outside the aerial bots field of vision, it is not
sustainable.

One problem with the ‘reactionary’ approach is
that there is no real memory of the land vehicles
location. Should the land vehicle travel behind an
object, the aerial robot with remain still, hovering and
scanning the scene until the land vehicle re-appears.
[For this project, we have defined the operating
environment to be one devoid of obstacles, allowing
the aerial bot can fly freely. The ability for the land
vehicle to ‘hide’, however, is an interesting topic that is
also examined.] By encoding previous actions /
locations into the state-space of the reinforcement
learning algorithm, the aerial robot can learn to
precisely deal with this problem.

The second main problem faced is complexity
and design. The reactionary controller's actions are
based on hard-coded functions. Improving the
reactionary controller requires the designer to craft
complex, conditional functions. Although the bot will
do only what it is told, this approach results in a large
amount of complicated code rather quickly, where as
the reinforcement controller does not. After an initial
state-space and action-space design, the Air Robot's
policy can be quite complex and function in ways not
obvious to a human designer.

CS 4758: Bird of Prey
Autonomous Air Robot Vehicle Tracking

Brian Wojcik

A. RELATED WORK:
No projects were found that closely resembled

this, however some do exist along the same vein.
An aerial robot following a ground robot (that was not
necessarily attempting to escape it) can be viewed
here: http://youtu.be/WKnNSUbI-mk . A faster moving
land robot (with the intent to escape) poses challenges
not present in the above, linked, project.

II. EXPERIMENTAL SETUP

Currently, all work has been done in simulation (due
to a non-functioning robot). A large amount of a time
has therefore been devoted to setting up the simulation
environment in a practical, applicable way, that is
conducive to how the aerial bot physically acts. This
includes creating and scripting (in a ‘visual’ script
language) a custom map in addition to changing the
architecture of how existing aerial bot programs
communicate (vision, analysis, and control). Setting up
the simulator itself was very work intensive, requiring
many files, programs, and packages to be downloaded
and compiled to run.

A. Environment
The simulated environment (map) was created

off a supplied ‘test’ map called
‘AirRobotTestMap.ut3’. This map was edited and its
launch settings altered so that it would launch with
UPIS server that initializes memory for video feeds
and control sequences to be shared between the
simulation and the Air Robot control code. This map is
a strong base to work in as it represents our operating
environment quite well - an outdoor flat field on a
clear, sunny day, devoid of obstacles (for the aerial
bot). Subsequent versions exist with obstacles for the
ground vehicle to hide behind.

B. Land Vehicle:
While running the simulator creates an

AirRobot object in the simulated world, it does not
have the ability to create a ground vehicle. By further
altering the map described above, a realistic, fully
functioning and controllable car was added to it. This
is the object the aerial bot will track and follow. It
functions similarly to a physical car, including how it
turns and accelerates. One problem with adding the car
to the simulation environment is that it does not stand
out vividly from the environment, making perception
difficult. The map was therefore scripted further to
make the car stand out visually, changing its color
upon spawn to a bright pink (a color chosen to stand
out out well in the real environment/on the aerial bots
camera). A filter was then coded so that any frame of

video that aerial bot takes filters all non-land-vehicle
colors.

As an amendment to this project, perception
was examined with a logistic classifier and a belief
propagation (BP) network. Noted after the conclusion,
the BP system results are quite similar to the current
simulation – the car is overlaid with with a colorful
estimation of its location while all other areas of the
frame are dark. Working with this logistic classifier /
BP setup, real-world perception can be handled
efficiently and effectively, requiring only minor
modifications to work in conjunction to this simulated
perceptions setup.

C. Visual Input and Control Structures:

As previously described, the initialization
work of the map and simulation environment has been
completed. Both the car and the aerial robot are
independently controllable in the environment, the car
is scripted to stand out visually, and the AirRobot has
access to its camera feed. The next step is to create the
coding structures for image capturing, analyzing, and
controlling based on this feed.

The original structures supplied with the simulator
were ‘PayloadViewer.c’ and ‘controller.c’. The Payload
Viewer simply displayed and stored the most recent
frame of video in memory. The Controller would move
the aerial bot based on a constant, hard-coded loop of
instructions. To implement perception based control,
therefore, the most up-to-date frame was read from
memory; it was analyzed by the analyzer; a control
sequence based on this analysis was saved to memory;
finally the control sequence was read and acted on by
the controller. Visually:

http://youtu.be/WKnNSUbI-mk

This process is not optimal. Complex
interactions occur between these programs which all
function independently. Each program (PayLoad
Viewer, Analysis, & Control) all have their own sleep
timers, their own overhead, and have to be synced with
the other two programs. Problems with communication
arise where Analysis could re-read the most recent
image if no new one has been saved, effectively
making the aerial bot act twice when it should act once.
Similarly, the controller could re-read an old control
sequence multiple times if analysis is not fast, or
missing one is Analysis is too fast. Simply put, the
initial process architecture would not work.

The solution to this problem was to instead combine
all the sections into a single file, a single master
program. In the new setup, the overheads of
saving/reading files & images do not exist, and only
one sleep timer exists. Additionally, more information
can be passed between the stages, such as Analysis
passing a multi-sequence chain of actions to the
controller. This ‘master’ program is more efficient and
faster than the old architecture while possessing all the
same abilities and more.

III. APPROACH

A. Reactionary Controller
1. Design

Given a frame of video, the controller code
controls the aerial bot in a reactionary process. The
process is based on the location of the land vehicle
within the quadrotor’s field of view. Two methods of
movement are utilized by the aerial bot: Rotation, and
Forward / Reverse translation. The operating height is
initialized on startup and the aerial bot remains at that
level throughout operation. Rotation is a function of
the horizontal location of the land vehicle within the
aerial bots field of view. The formula being:

Rotation Action = 2 * (x_loc% -0.5)
Forward/reverse translation speed is a function of the
car's distance from the aerial bot. The distance metric
used is based on number of car pixels observed
(directly related to the distance of the bot). The
formula used is:

Speed = (Max_Close-pixcount) / Max_Close
where Max_Close is the distance in pixels the Air
Robot should stop moving closer. A pixel count beyond
Max_Count results in a negative speed, moving the Air
Robot backwards.

2. Advantages

The advantages of this controller is that it
is clear what the aerial bot is doing in all states.
This design is easily readable and adaptable (to a
point). Possibly the most advantageous aspect of
this approach is that the action space is not
discretized - actions can take on rotation or speed
values anywhere from [-1, 1]. Rotation and Speed
actions can also easily be calculated independently
and then superimposed to make complex actions.

3. Limitations

This approach is limited, however, by the
designer. The functions are chosen by trial and
error to find valid action performance, and are
based heavily on the developer's thought process
and expectations. After a base level of simple
action functions, improvements to this controller
become difficult. Rarely used yet complex
conditional functions must be included to produce
improvements in edge-cases. Initial ease of
implementation is followed by a series of complex
conditional actions for specific state occurrences.
The code is no longer easily understandable or
adaptable.

B. Reinforcement Learning Controller
1. Design

The general design of the reinforcement
learning controller follows:

• Design a state and action space that the Air
Robot will operate in.

• Randomly act these actions in the simulator
while the ground vehicle moves.

• Record state transitions and average rewards
based on these observation points.

• Complete value-iteration reinforcement
learning to generate a policy for the Air Robot.

• In live execution, the Air Robot classifies its
current state and looks up the action for it from
the learned policy.

2. Simple State and Action Space

A simplified state and action space was
created to take advantage of a low amount of
required training data. This included a state space
of : 3 depth positions and 3 frame positions

represented as 4 bit binary string. The action space
included 3 speeds and 5 rotations. Due to this limited
space, the training data required to fully examine the
space is 2048 training points (calculated by 8 actions *
2^4 bits for start state * 2^4 bits for result state), an
amount that is perfectly reasonable to obtain.

The benefit of this limited controller is that it
is a strong base for future learning. It is easy to gather
an excess of training data, and is easily extendable to
include a more complex state space or action set. For
the most part, this set up is directly comparable to the
reactionary controller, in that it utilizes a similar action
space (though not discritized as it is here). By
comparing this controller with the reactionary one, and
their performance, one design can be chosen depending
on desired results.

3. Complex State and Action Space

In addition to the simplified reinforcement
learning controller, a theoretical reinforcement learning
controller was also designed. This design differs in
that:

• State space now include 3 distance states, 3
horizontal percentage of frame states, 3 'past'
states (previous horizontal percentage), and 3
relative velocity states.

• State space is represented as an 8 bit binary
string.

• Action space now includes 3 speed options, 5
rotation options, and 2 horizontal translation
options.

The result of this design is that now the state space
fully encodes both the aerial bot's state and the ground
vehicle's state. By looking at the aerial bots past
rotation, as well as the ground vehicle's current
horizontal position in the frame, the state space
encodes the car's translation perpendicular to the air
robot's line of sight. This information tells the bot if the
car is moving to the left or the right, and how fast. By
keeping track of the relative velocity between the car
and the air robot, the state space encodes the car's
translation parallel to the air robot's line of site. This
information tells the bot if the car is coming towards or
away from the bot. As this state space encodes how the
ground vehicle is moving in relation to the Air Robot,
this set up is extremely powerful and will produce a
precise, smarter policy. Additionally, this complex
setup includes more actions to fully utilize the range
of actions available to the physical aerial bot.

This setup was not used, however, simply
because of the massive amounts of training data
required. For 10 actions * 3^4 initial states * 3^4
resulting states, a total of 65,610 data points are
required to observe the entire space a single time. For
this application the required training data is far too
great, however this setup provides a theoretical near-
optimal design.

 IV. RESULTS

Both the reactionary controller and the 'simple'
reinforcement learning controller were implemented for
this project. Both achieved comparable qualitative
results by observation, following the ground vehicle in
simulation for an extended period of time. The
reactionary controller ultimately outperforms the RL
controller at this stage in development as it's action
space is not descritized (a key benefit of the reactionary
controller).

Quantitative results are in agreement with this
finding. The controllers were evaluated based on the
number of frames in which the ground vehicle was
'lost', or not in frame, for a given run of a timed
simulation 500 frames in length. This evaluates both the
controller's ability to keep the car in frame, as well as
its ability to re-find the car when lost. The ground
vehicle was human controlled, and driven between
sequential way-points to limit driver-bias.

The reinforcement learning controller lost the
ground vehicle an average of 84 frames out of 500
frames. The data for three runs are presented below.

1 2 3
0

50

100

Controller A

Time Seen vs Lost

Lost

The reactionary controller lost the ground
vehicle an average of 46 frames out of 500 frames. The
data for three runs are presented below.

V. CONCLUSION

The result of this project is the creation of a
complete, end to end, system for vision-based action of
the aerial bot. Additionally, multiple controllers have
been examined, implemented, and tested in various
forms.

The creation of multiple controllers has had
interesting results. The reactionary controller out
performs current reinforcement learning controllers in
tests for numerous reasons. The first is action space
discritization. The reinforcement learning controller
relies on a finite number of actions while the
reactionary controller is unlimited. Even alternative
learning algorithms like Value Function Approximation
can not solve this problem - the action space must still
be discritized.

While action space discritization is a problem
for the reinforcement learning controller, ultimately the
reinforcement learning controller is expected to
outperform the reactionary controller. The
reinforcement learning controller is operating on a
severely limited action space, state space, and number
of training data points. As any one of these increases,
large improvements in the operation of the RL
controller will be seen. The implementation of the
reinforcement learning controller is in its infancy - there
is room for improvements in nearly all aspects of its
operation, where as the reactionary controller is at its
functional limit. Additional effort put into the
reactionary controller will have limited improvement on
its operation, and will increase code complexity
noticeably. Through the examination of both types of
controllers - their development, improvement, and
results - it is concluded that, for any implementation
beyond the basic, a reinforcement learning controller
should be implemented between the two.

VI. AMENDMENT: PERCEPTION

As previously noted, the perception system of
this setup was expanded to use a logistic classifier and
belief propagation (BP) network. Coded in simulation,
the ground vehicle was coated in a vivid overlay to
make perception easier. In the physical world, however,
this technique is non-functional. It would require the
ground vehicle to be similarly coated in a visually vivid,
unique color and remain under constant lighting
conditions. Should the color not be unique, color 'noise'
from other objects would influence perception. The
ground vehicle traveling under different light
intensities/sources would cause its perceived color to
change, again making this approach to perception
difficult in the physical world. In an effort to deal with
these problems, perception was redesigned to not be
purely color based. The perception features were
instead learned by a logistic classifier and resulting
weight set fed through a BP network, resulting in a
robust, accurate visual perception system.

A. Complex Environment
The logistic and BP classifier was initially

trained on data taken from a 'complex' environment.
This environment was an indoors robotics laboratory.
Due to the similarity between the ground vehicle and
spare parts from other robots and experiments, should
the classifier strongly identify the vehicle in this
environment, it can be extended to operate in its
simpler, expected, operating environment of the ground
vehicle outdoors. Training in the complex environment
raises the confidence that the perception would
correctly classify the car, and only the car, in outdoors
environment where other metallic objects, or even
objects with wheels, might appear unexpectedly and not
be represented in the outdoors train/test set.

1. Logistic Classifier

Trained on 'complex' data, the logistic
classifier achieved accuracy rates of 83.0% . Displayed
below, the first image from the left is the original scene.
The second image displays the sign of each area's
classification, white for positive, black for negative.
The third image is a superposition of the two; areas in
the image more strongly black or white show the
confidence of that classification. As can be seen, the car
is largely colored bright white, indicating a strong
confidence in its (correct) classification. Other areas of
the image, however, are also colored while. This noise /
misclassification is one of the items the BP network
aims to correct.

1 2 3
0

50

100

Controller B

Time Seen vs Lost

Lost

2. BP Network and Classification

The goal of the BP classifier is to clean the
results of the logistic classifier. Functioning optimally,
the output from the BP classifier removes erroneous
positive classifications while extending the correct
classification of the ground vehicle to the ground
vehicle's correct shape. The BP network is a series of
interconnected nodes, similar to artificial neural net. By
pumping each node the output of the logistic classifier,
each node builds up its own potential until in meets a
defined threshold. Once that threshold is reached, the
node fires, increasing the potential of its neighboring
nodes. The image pixels, then, are classified by the
rate/number of times they fire; a higher firing is more
confidently positively classified. By altering how these
nodes interact, when they fire, and other parameters, the
BP network can effectively remove all noise from the
input image, and extend the classification of the car to
solely the bounds of the car.

Running the BP classifier in the complex
environment, a recall rate of 94% and a precision rate of
51% were achieved. As can be seen in the below
images, the resulting classification (right) is a cleaned
version of the initial (left). Less erroneous points are
misclassified, and the car's classification 'bubble' more
accurately represents the car's true shape.

B. Simple / Expected Operating Environment
As expected, the logistic and BP classifiers'

parameters could be precisely extended to the more
simple, expected operating environment. The ground
vehicle is expected to operate outdoors, either on grass
or on open blacktop pavement. Using the same
parameters (downsampling rate, feature patch size) the
logistic classifier achieved an accuracy rate of 88.6%,
well above that of the complex environment. As can be
seen below, however, noise still exists in the data even
at this higher accuracy, and can be filtered out by the
BP system.

The results of logistic classifier further
increased the precision of the BP classifier results,
achieving (on average) a 99% precision rate and 11%
recall rate. Although recall is a low in this setting, the
previously described controllers are dependent on an
accurate location of the car, which this does quite well.
It dramatically reduces noise in the data while keeping
relevant car data intact (or even enhancing it). This
functionality uses the exact same node parameters as
the 'complex' lab setting, showing that this BP design
correctly identifies the car (and only the car) in both
the lab and outdoors setting; a quite powerful ability.

C. Final
The use of a logistic classifier in conjunction

with a belief propagation network creates an accurate
and robust perception system for identifying the ground
vehicle. Not purely based on color, it provides distinct
advantages over the base perception used in simulation,
and promises greater ability to identify the car and only
the car. The fact that the same BP network can be used
for both indoor and outdoor environments without

alteration means that it has rather few weak points,
functioning well in a wide range of environments and
operating conditions. By removing noise while
preserving or enhancing the correct data, it is a very
accurate and useful system. Paired with the
aforementioned control code, a complete end-to-end
system for finding and following a ground vehicle with
the aerial bot has been created and examined.

	A. 	Environment
	B.	Land Vehicle:
	C.	Visual Input and Control Structures:
	A. Reactionary Controller
	B.	Reinforcement Learning Controller
	A.	Complex Environment
	B.	Simple / Expected Operating Environment
	C.	Final

