Voluminious Object Recognition & Spatial Reallocation
Into a Containing Medium (VORSRICM)

Lisa Fawcett, Michael Nazario, and John Sivak

Abstract—Placing objects in the fridge, like many tasks,
is simple for humans and complex for robots. A necessary
component of loading a refrigerator is to stack any items such
that they are available and in the most space-efficient locations.
We consider optimal packing as a refrigerator that has the
smallest amount of unoccupied space between items and has the
most items in view. Because of this, rotating objects and placing
them on top of one another becomes important, meaning the
stackability of each object’s sides is crucial for packing a fridge.

Assuming a simple rectangular prism model for each object,
we propose a learning approach to determine the stackability of
each object’s faces. Training a support vector machine on point
cloud data of food and kitchen related objects, we determine
which sides are suitable for objects to be placed on top of.
This information then is incorporated into our bin-packing
algorithm, allowing the PR2 to stack items with less initial
information about its environment.

I. INTRODUCTION

Often containers can only store all desired items if packed
efficiently. In some cases, packing all items is acceptable, but
in a situation such as a refrigerator, food will spoil if it is
not packed. On the other hand, if objects are packed too
compactly, fragile items could be crushed. A personal robot
should be able to make a compromise between these two
extremes and create an acceptable solution that gets the job
done.

Our proposal is to create an algorithm that would allow
a personal robot to make such decisions. In order to do
this, we need to determine what a good packing is, while
ensuring that objects are not crushed through a concept of
stackability, or how the object can be stacked and stacked
upon. Using a simple rectangular prism model for objects,
each object’s face is considered stackable if its face is stable
enough to set on a flat surface and place an object on top
of. A support vector machine classifies the point cloud data
from a PR2 to determine stackability. We use simple food and
kitchen-related object models as our training set. Once the
object’s stackability has been determined, we run a greedy
packing algorithm which places the objects from largest to
smallest and from the back of the fridge to the front, while
guaranteeing that all stacking constraints are satisfied. After
all of the objects’ locations have been decided upon, we use
a motion planning algorithm integrating the ROS Pick and
Place package in order to get the PR2 to move the objects
from the table to the fridge.

Our algorithm has a 79.81% accuracy of classifying the
stackability of sides of unknown objects.

Lisa Fawcett, Michael Nazario, and John Sivak are with the School
of Computer Science, Cornell University. {1c£38, mgn29, js2728}
@cornell.edu

II. RELATED WORK

Previous work has been done in placing unknown objects
by Jiang et al., 2012. Our approach is different as we are not
allowing for objects to be placed inside one another in our
model. However, we use features similar to theirs in order to
classify whether a side is stackable or not in our rectangular
prism model. In addition, we are assuming the environment is
a perfectly flat surface whereas they assumed nothing about
the flatness of the environment.[1]

III. APPROACH

Our approach involves three main sections: the determi-
nation of the size and stackability of objects, the packing
algorithm and visualizing the result, and controlling the PR2
to take action based on the algorithm’s output.

A. Background

Since the entire task of discovering an object, classifying
it, and moving it to a location in the refrigerator is an
extremely complex problem, we make the following assump-
tions in our model to simplify the problem:

o All objects are placed on a flat surface within reach of
the PR2.

o Objects are in known locations and orientations.

¢ Objects are easily approximated by rectangular prisms.

« The bottom surface of an object is stackable.

o Environment is known. Locations of refrigerator and
tables are known.

B. Object Bounding

Because we represent objects as rectangular prisms, we
need to determine a reasonable bounding box for each
perceived object. Therefore, we created a simple algorithm
using Point Cloud Library (PCL) to achieve this goal.

First, since noise is common in stereo point cloud data,
we clean up our data with a pass-through filter and statistical
outlier remover. Using a voxel grid, we simplify our point
cloud data so that we can use a RANSAC algorithm to
determine the largest plane in the data. We then remove
the plane from the data and use the plane’s representation
to constrain our search of bounding boxes to only those
which lie normal to the plane as one of the box’s dimensions.
Finally, we rotate the box using a small increment in angle
and keep the tightest bounding box around the object. We
have determined that this will give a reasonable bounding
box for an object, since we guarantee at least one of the faces
is stackable and therefore placeable in the fridge. Figure 1 is



Fig. 1. Bounding box for a point cloud of a coffee cup

an example of a bounding box which is tightly bound around
the point cloud of a coffee cup.

From this bounding box, we extract point cloud segments
which can be treated as the faces of the object. Any points
which are within a threshold distance from the bounding
box’s edges are treated as part of that face. As a result, we
get a snapshot of that side’s shape and size. Figure 2 displays
a visualization of these divisions. We treat any points within
1

4 of the dimension’s distance from a face as part of that

face.

Fig. 2. Point cloud segmented into faces. Each color represents a face
which that point belongs to.

C. Stacking Classification

Since the sides of our objects are of unknown stackability,
we need to determine whether or not the sides are stackable.
In order to do this, we are using an implementation of a sup-
port vector machine, SVM'€"[2], to classify our point cloud
data’s stackability. The training data is manually classified by
a human in order to guarantee better accuracy in stackability
recognition.

Since we use a simple rectangular prism model, we are
assuming stackable objects are in general flat for their entire
side of a box. Our features are therefore mainly related to the

curvature of the surface. Working off of Jiang’s features[1],
we use a histogram of the height of the face to capture the
general shape of the object along with a measure of the
curvature of the surface directly. In addition to these features,
we use simpler features such as the orientation of the face
with respect to the table. In total, we are using 49 histogram
features, 14 curvature features, and 4 simple features.

D. Bin-Packing and Visualization

Since we know what objects the robot is working with, as
well as knowledge about the environment (object locations,
fridge location, etc.), the first step is determining how to
put the given set of objects in the fridge. In order to
establish where the PR2 will place the objects we created
a bin-packing algorithm that takes in rectangular prisms
representing the bounding boxes of each object and their
stackability properties, as well as the dimensions of the
fridge, and returns the coordinates and rotations for each
object to be put in the fridge. The algorithm takes a greedy
approach to the problem by stacking the largest items first,
and stacking from back to front and left to right.

The algorithm works by partitioning the floor of the refrig-
erator into cm-by-cm squares, each with an associated height.
As objects are placed in the refrigerator, the height of each
square is updated (at 1 cm resolution) based on the object
placed on it, allowing the algorithm to take into account
previously placed objects. If a square is not stackable, that
location is treated as an invalid location for higher stacking;
however, if a stacking orientation would place an object over
the location, lower unstackable heights will not block the
object from being placed.

We also created a visualization to go along with the
packing algorithm, allowing the user to see how the objects
are being physically placed. The screenshots in Figure 3
show the result of one run of the algorithm using a test
set of objects we created. Note how the objects are stacked
vertically as much as possible, which is an artifact of our
test input. Also, there is some acceptable overhang between
objects as long as it is not too great, shown in greater detail
in Figure 4, which allows for superior packing results.

RN

Fig. 3.
The stacking result without the refrigerator. (right) The back of the stack is
flush with the refrigerator, wasting no space.

(left) The objects stacked in a simple refrigerator model. (center)

E. Object Grasping and Placement

We implemented basic pick-and-place capability into our
custom ROS package using existing ROS packages and



Fig. 4. The algorithm allows some overhang and gaps between objects if
it provides for better packing.

examples, most notably the Pick and Place package for the
PR2. This allows us to locate objects on a flat surface, have
the robot turn to inspect the object, find a point to grasp
the object from (if one exists), and plan the motion to grasp
the object. Combining this with the ability to move the arm,
rotate the base, rotate the end effector, and open / close the
gripper (all granted from other ROS packages); we have all
of the tools to relocate objects to the fridge. Figure 5 below
shows a sequence of screenshots displaying the sequence of
actions the robot takes when picking up an object.

i

|

Fig. 5. The PR2 locates and picks up most objects on its own.
With all of these system components in place, piecing
them together resulted in a straightforward system that goes
through each object starting with the bottom-most, scans the
area where it should be, locates and grasps the object, then
turns to the refrigerator and places the object as specified.
The resulting program can robustly find and grasp objects
on the table, but has some trouble placing them. Due to
the nature of the Pick and Place package, we could not
use the place functionality to put items in the refrigerator.
This resulted in hardcoding Cartesian movements to reach
the destination for each object. The largest potential for
error using this method is crashing into other already-placed
objects, because they are ignored while the arm translates.
Another shortcoming of the program is that it is incapable of
placing objects in certain rotations. For example, in Figure
4 the PR2 is grasping the can from its sides. If the packing

algorithm were to place the can on its side, the PR2 would
be incapable of doing so, because its gripper would be in the
way.

Fig. 6.
can

The PR2 can pick up differently shaped objects such as the soda

There are also some more general problems with the
program. First among these is the long time it takes some of
the features to run (such as constrained arm path planning).
Such wait times often varies from one run to the next and
could result in the PR2 taking as long as 15 minutes to pick
up and place a single object in the refrigerator. Another issue
is that objects could fall out of the PR2’s grasp fairly easily
if they were shaken around enough, and even when they did
not fall out, they could be repositioned which changed its
orientation when placed. Fixing these issues would be an
important step in refining the project and getting the system
ready for operation on a real PR2.

Fig. 7.
the refrigerator.

A small test environment, containing a single surface, a cup, and



F. Future Work

While we have implemented a system which defines the
bounding box and stackability of objects as well as places
them in the simulator, there is more work which could be
done to further this work. Further testing and adaptation of
these algorithms to a physical PR2 should be completed to
further verify the results of this project.

In addition, integration of Alejandro Perez’s “Interleaved
Planning for Placement on the PR2” project would allow
the process a more fine-tuned navigation in an enclosed
space such as the refrigerator. Integration with Daniel Jeng’s
”Multi-object 3D Placing Constraints” would also possibly
improve the compression of stacking items in the fridge by
solving constraints over the items placed in the fridge rather
than greedily filling it.

This process could also be adapted to work in other
environments to pack objects such as a bookshelf or a
warehouse. For more complicated situations and objects,
both arms could be used to manipulate items when moving
them into and out of the refrigerator.

IV. EXPERIMENTAL SETUP
A. Overview

For testing our packing and stackable face recognition
systems, we have been using models of common household
items that are often found in refrigerators. This data set
includes items such as milk jugs, juice containers, and
tupperware, which are all items we anticipate encountering
during actual operation on the PR2. For testing our entire sys-
tem from start to finish, we created a simulated environment
in Gazebo, which runs everything using a simulated PR2.
The environment is similar to the one we anticipate working
with in the real world, although there will be differences
in localization. Figure 8 shows our full test environment to
check operation on multiple objects.

Fig. 8. Full size test environment containing multiple coffee cups to place
in the refrigerator.

Our main task was to determine the effectiveness of the
features chosen for the SVM. In order to do this, we needed

a dataset which was large enough to accurately be able to
test our features. Since our algorithm contains 67 features,
we want a dataset which was at least on the order of the
number of features. We gathered a total of 104 datapoints
in order to test the program. We would have preferred more
data; however, gathering data in Gazebo was a very lengthy
process and good point cloud data for our test models was
hard to come by. We used leave-one-out cross validation to
confirm the accuracy of our features with our small dataset.
Also, we tested how the robot performs the entire process by
testing in a sample environment such as the one in Figure 8.

B. Results

Our features performed decently on determining the stack-
ability of a face for our dataset. Our best results came from
using the radial basis function kernel with a high ¢ within the
range of 100 to 1000 with an accuracy of about 80% as seen
in Table 1. In general, the radial basis function outperformed
the linear and parabolic kernels.

Accuracy vs. ¢

—B-Linear —#—Parabolic Radial Basis Function
100

80 -

60

40

Acauracy (%)

20

0.001 0.01 0.1 1 10 100 1000

c Linear Parabolic | Radial Basis Function
0.001 | 56.73% 56.73% 56.73 %
0.01 56.73% 51.92% 56.73 %
0.1 50.00% 76.92% 56.73 %
1 43.27% 75.00% 75.00 %
10 75.96% 75.96% 76.92 %
100 77.88% 74.04% 79.81 %
1000 75.96% 75.00% 79.81 %
TABLE I

ACCURACY OF EACH KERNEL FUNCTION VS. C

Our data is somewhat consistent across c¢ values; however,
noise is still present in the data. There are many sources of
noise which may have affected the data:

o A human must classify the stackability of a surface

o The dataset is somewhat small

« The stackability of a surface depends entirely upon its

bounding box which may confuse a human classifier

When the simulated robot placed objects into the refrigera-
tor, we had a somewhat low rate of success of placing objects
in their correct locations. Most of these issues were based
around issues in the PR2 navigation stack as the robot would
need to take an extremely long time to pick, plan, and place



an object. While the robot was planning or moving, often the
navigation stack would fail or crash without warning, leaving
the robot to freeze in place.

C. Future Experiments

A more extensive dataset should be collected in order to
ensure the accuracy of the chosen features. From there, the
algorithm should be tested on completely unknown objects.
Once the algorithm is verified in the simulator, it should
be tested on the actual robot using known locations for
the objects to place in the fridge. However, the stackability
of the objects must remain unknown to test the accuracy
of the chosen features on real noisy point cloud data.
Improved methods of navigation should also be tested when
the navigation into the refrigerator is improved.

V. CONCLUSION

In general, our algorithm will allow a PR2 to place an un-
known object in a known location into a known refrigerator.
Our accuracy of classifying stackable faces is approximately
80% which is reasonable for the loose definition of stacka-
bility. Our simulation is also capable of placing up to two
items in the refrigerator. From these two basic metrics of our
algorithm, it is feasible to be able to place a small number
of items into the refrigerator without trouble.

Future research needs to be done into improved navigation
in order for the PR2 to perform at its best in a constrained
environment. Alejandro Perez’s “Interleaved Planning for
Placement on the PR2” project would help significantly in
improving this algorithm’s success rate at placing objects
into the refrigerator.

ACKNOWLEDGMENTS

We would like to thank Yun Jiang and Ashutosh Saxena for
the help with the organization and execution of this project.

REFERENCES

[1] Jiang, Yun, et al. Learning to Place New Objects. To appear in
International Journal of Robotics Research (IJRR), 2012.

[2] T. Joachims, Making large-Scale SVM Learning Practical. Advances
in Kernel Methods - Support Vector Learning, B. Schlkopf and C.
Burges and A. Smola (ed.), MIT-Press, 1999.



