

Abstract— Detecting an object in an image or a video is one
of the foremost work before proceeding to understand the
semantics of the scene. Tracking such target objects over
sequence of frames provide us relevant information about
where the object is. In this project, we are developing
algorithms to help make the robot detect household/food items
in the scenes captured through Microsoft Kinect Sensor. Also,
we would be using the object tracking algorithms to carve out a
reliable object classifier. The algorithms use rich set of features
from both 2D and 3D frames.

I. INTRODUCTION

Object detection and tracking is the first step in
understanding the environment around the Robot. It is useful
in detecting the activities and categorizing them based on the
object it manipulates and interacts with. By tracking objects
simultaneously we can know the association of objects with
each other. For example, moving of hand with the milk
container provides information that both objects were used
for same activity ‘pouring milk’ and that they work with each
other.

In 2D images, the two most used algorithm for detecting
things are Haar Classifier [3] and the HoG [2] features based
algorithm. But they have mostly been successful on very
small subset of objects specifically in Face detection and
pedestrian detection.

We used both 2D and 3D features of the object to classify
target objects. In 2D, we used both HoG features and color
histograms in our learning algorithm and used Viewpoint
Feature Histogram from 3D point cloud data. We used
Support Vector Machine for learning from 2D frames and k-
Nearest Neighbour approach to learn 3D data.

For tracking the objects, we used Discrete Kalman Filter [4]
with some heuristically learned parameters. Although linear,
it was able to track the objects hovering with the human hand
with good accuracy but was bounded by the false detections.

We ran the experiments on five objects, namely Can,
Banana, Pear, Mug and Cereal Box with different type of
environments, cluttered and uncluttered. For food type items
we got an accuracy of around 70% and for household items it
was around 55% average precision. Tracking these objects
was nearly as accurate as the detection algorithms (reasons
discussed in Section 2.3).

II. APPROACH

We now outline our approach. Our input is Kinect point
cloud data of the scene. The scenes are typically table-top
scenes but it could be any other scene too. We then, segment
out the point cloud clusters of each object in the scene. These
segmented clusters are the atomic units in our model. Our
goal is to find the most probable cluster of the target
category.

Next, we use the output from the detection module as the
observations to our tracking module. The tracker uses the old
observations and the current one to predict the least
erroneous pose (state) of the object.

2.1 Object Segmentation
Segmentation is the step to get the probable clusters
containing the target object. In 3D point cloud data,
segmentation is done using the RANSAC algorithm to
segment out the plane which could be table-top, floors and
walls.
After getting the non-planar points from segmentation,
clustering is done to get the probable clusters. We
experimented with two different algorithms:

Euclidean Clustering: The algorithm uses nearest neighbor
approach to divide an unorganized non-planar point cloud to
smaller parts. This approach is more prone to over-
segmentation.

Region-Growing[5]: This approach uses smoothness
constraint for clustering. It uses normals from the surface of
the point cloud as the method to align points to different
clusters. This approach is more prone to under-segmentation.

 Fig.1 Segmentation

2.2 Object Detection
Detection of the object from frames of the video is the most
critical step for the tracking and thus scene understanding.
We used both 2D and 3D features to capture the inherent
local and global properties.

The properties we aim to capture through our model are:

CS 4758/6758: Object Detection and Tracking
Rudhir Gupta

RANSAC Non-planar points
extraction

Clustering

Visual Appearance. Visual properties like color, texture and
gradients of intensities provide us good local property of the
object.

Shape and Geometry. The shape provides the signature of
the object. The normals from the object surface in 3D data
provide us such information. This also captures the
pose/alignment of the object with respect to the viewpoint.

2.2.1 Features
We used Hue-Saturation color histograms and Histogram of
oriented gradients as our primary features from the 2D data.
These features are the local features and provide the intrinsic
properties of each target object.

In 3D, we used the Viewpoint Features Histogram (VFH)
features which captures the global orientation of the normals
from the target’s surface. This acts as the signature of the
object.

 Fig.2 2D Classification

2.2.2 Learning Algorithms
Support Vector Machine[6]: We used the SVM
implementation for classifying the 2D images based on
features (which are 2D features here). We used SVM as it
can work in higher dimension too and is a fast prediction
algorithm as it produces a very short model (Support vectors)
for the training data.
We used svm-light1

 implementation and used linear kernel
function in a regression model.

The weight vector of the hyper-plane in svm is captured by
summing the support vectors (whose lagrange multipliers (α)
are greater than 0) using the following equation:

 𝑤𝑤 = ∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1
 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒, 𝑥𝑥𝑖𝑖 = 𝑖𝑖𝑖𝑖ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
 𝑦𝑦𝑖𝑖 = 𝑖𝑖𝑖𝑖ℎ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
 𝛼𝛼𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖ℎ 𝑆𝑆𝑆𝑆

Since, we were using the binary classifier, the regression
values can be taken as the scores assigned to the detections
of each cluster. Also, we used the Platt’s Algorithm based
on the LibSVM2

1 http://svmlight.joachims.org

 implementation to get the probability scores
for each detection by learning the parameters A and B for the
MLE model using the logistic regression with 4-fold cross
validation.

2 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

 𝑃𝑃(𝑖𝑖|𝑖𝑖 𝑜𝑜𝑜𝑜 𝑗𝑗, 𝑥𝑥) = 1

1 + 𝑒𝑒𝐴𝐴𝐴𝐴+𝐵𝐵�
 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒, 𝑓𝑓 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
 𝑥𝑥 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑖𝑖, 𝑗𝑗 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

k-Nearest Neighbor: The VFH features from 3D frames
were fed into the k-NN algorithm. The algorithm focuses on
finding the most probable class based on the closest training
examples. The distance between target cluster and the trained
object is taken as score and binned. We used Flann library
with k = 6.
For example, if the distance between apple cluster and
trained orange is 445, then binning it with 50 width, gives a
category of 9.0 but a score of 1/0.9, equaling 0.1.

 Fig.3 3D Classification

2.2.3 Training

2D Image Training: The 2D classifier is trained on both
positive and negative images. The positive images are of
some specific size which differs for each class of object like
64 x 64 pixels for apple and 64 x 96 for cereal box. The
trained model from SVM is generated which can be used for
testing test data. We train on the positive images of same
window size. The negative samples can be of arbitrary size
and thus can generate multiple negative samples by scanning
the given image at different positions.

3D Image Training: The 3D classifier needs the VFH
features of the images, thus the training is done on specific
target objects. All the trained features are fed into kNN
algorithm.

Fig 1.a: All three cans are found

Fig 1.b: distinguishes between Pear and apple

Fig 1.c: finds banana as most probable

2.2.4 Testing

Testing is similar to the Training procedure. In testing the
image for the 2D classification, we traverse the image at
specific size window but at different sizes. We used
Pyramid Scaling methodology, where the target image is
downscaled as a constant multiple and the window size is
maintained the same. This procedure helps with finding the
object at different sizes in the same image. Also, the window
is moved some pixels and not at each pixel so as to not
increase the runtime exponentially.

2.2.5 Mapping 2D to 3D
When testing, we change the 3D cluster to 2D cluster. After
labeling using the 2D classifier, we need to back-project it
back to its original coordinate. We implemented this
mapping from 2D data points to 3D points.

For every cluster we have segmented, we first find all the
VFH features and find the closest training example class
(with distance). We score it with the inverse of the distance
from the most probable training instance class. We, then get
the 2D image representation of the cluster.

2D features described above from this cluster are then used
to get the label using SVM, which is trained on positive and
negative image of the specific target object.

2.2.6 Re-estimating Scores
Each classifier, 2D and 3D, gives the bounding box of the
detected object. The bounding box is basically the cluster’s
3D bounding cube while in 2D it’s the rectangular box in
which object was detected. Sometimes, the segmented cluster
is not a perfect box around the object but is usually the box
that contains the object as well as some other connected
components involving the target object, which is generally

part of human skeleton with the object like the hand holding
the mug. To counter it, we do re-estimation of the cluster
boundaries when the bounding box from 2D and 3D
classifiers differs greatly, here 3.0 multiple of th 2D box
width and height.
The re-estimation creates the new 3D bounding box based on
2D one projection with some added padding. And score is re-
computed based on the new box.

 Fig.4 Over-all architecture

2.2.7 Inference
We used the scoring from both 2D and 3D features to build
an accumulative inference model. The model is simply the
sum of the both scores. The k-NN score is just the reciprocal
of the distance from the closest training example.

2.2.8 Analysis

HoG versus HSV: To see which feature is important where,
we tested the dataset on two types of features – only HoG
and HSV + HoG. We did not see the result on just the HSV
feature as HSV is just a complimentary feature. The results
are as shown in Table II.
In all the cases, the precision decreased when used only HoG
features (we are not using the VFH features here). For
banana and pear, the precision did not decrease greatly as
expected as the shape alone is not so discriminative. It might
be because in the test set the other items as well as
background was not so similar to pear and banana shape.
Can, which does not have color as an important feature, did
quite well without VFH feature.

Euclidean versus Region-growing Clustering: Clustering
is an important step for object detection and thus choosing
the right scheme is must for robust detection. We tested the
some 3D scenes on both of the clustering algorithms
separately to see which performs best. The results are shown
in Table I.
From the results, the region-growing algorithm performs
slightly better in cluttered space but not major difference in
accuracy when used in uncluttered space. Thus, only
difference favoring Region-growing is that it favors under-
segmentation, which sometimes is helpful in bringing up the
recall. Both of the test set involved the human skeleton
mingling with the object.

TABLE I.

Class Total Samples Precision
(Euclidean)

Precision
(Region-grow)

Mug 57 66.7% 65%
Cereal-Box 70 40% 43%

 Precision Table for different clustering methods

TABLE II.

Class Total Samples Precision
(HoG)

Precision (HoG
+ HSV)

Pear 44 50% 52.27%
Banana 44 38% 40.9%
Can 44 77.2% 79.4%

Precision Table for different features

2.3 Object Tracking

Object tracking is done for robust detection as well as to
counter occlusions. We implemented a Discrete Kalman
Filter to track the object using the object detections output as
the observations.

2.3.1 Kalman Filter
The Kalman filter addresses the general problem of trying to
estimate the state 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛 of a discrete-time controlled
process that is governed by the linear equation.
 𝑥𝑥𝑘𝑘 = 𝐴𝐴𝑥𝑥𝑘𝑘−1 + 𝑤𝑤𝑘𝑘−1, 𝑤𝑤 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (1)

with a measurement that is,
 𝑧𝑧𝑘𝑘 = 𝐻𝐻𝑥𝑥𝑘𝑘 + 𝑣𝑣𝑘𝑘 , 𝑣𝑣 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (2)

The n x n matrix A in the difference equation equation (1)
relates the state at the previous time step k-1 to the state at
the current step k.
The Kalman filter estimates a process by using a form of
feedback control: the filter estimates the process state at
some time and then obtains feedback in the form of (noisy)
measurements. The time update equations are responsible for
projecting forward (in time) the current state and error
covariance estimates to obtain the a priori estimates for the
next time step. The measurement update equations are
responsible for the feedback.

 Fig.5 Tracking

 Fig.6a mug tracking

 Fig. 6b Cereal-box tracking

 Fig. 6c Cereal-box tracking

2.3.2 Model
The model of the Kalman Filter is defined by the State
matrix A, the measurement matrix H, the process noise Q
and the measurement noise R.

The state in our model is defined to be the x, y and z position
of the object as well as the velocity component dx, dy and dz
which brings the movement of the object into the model.
Thus, A = (𝑥𝑥 𝑦𝑦 𝑧𝑧 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑)𝑇𝑇.

While the measurement matrix H is defined to be (𝑥𝑥 𝑦𝑦 𝑧𝑧)𝑇𝑇 .
Since there could be two types of observation errors:

 - Displacement error – which is the error in location of the
 bounding box containing the object in which the
 prediction is accurate.
 - False prediction – which is the false detection from
 object detection module. Here the observation is
 completely off.

The error in observation could sometime be large and
sometime be small. Thus the standard deviation chosen for
the model is 50 pixels. The process noise, Q, based on this is
1.2 and so is the measurement noise, R.

2.3.3 Tracker
Prediction of the state is done in two steps- one with time
update and the measurement update. The prediction step uses
the state matrix to predict the next step using the equation
(1). The measurement update steps corrects the prediction
error by using the observation from the object detector. The
kalman gain in our case is:
 𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘−

(𝑃𝑃𝑘𝑘−+ 𝑅𝑅)
, 𝑃𝑃−𝑘𝑘 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

And the new measurement is given by,
 𝑥𝑥𝑘𝑘 = 𝑥𝑥𝑘𝑘− + 𝐾𝐾𝑘𝑘(𝑧𝑧𝑘𝑘 − 𝑥𝑥𝑘𝑘−)

TABLE III.

Class Total Samples True Positives Precision
Food Items
Pear 42 36 85.7%
Banana 42 21 50%
Can 42 30 71.4%
Household Items
Mug
(uncluttered

57 37 65%

Cereal-Box
(cluttered)

70 30 43%

Object Detection Precision Table

2.4 Dataset Collection and Object Labeling

2.4.1 Collection
Dataset collection is done by placing the target objects on
table and taking snapshots using kinect camera at varying
poses by rotating the object manually. Also, the tilt angle is
also varied – 10 and 45 degrees.

2.4.2 Dataset Preprocessing
The collected dataset is preprocessed by segmenting out the
background and stored as point cloud file. Also, the RGB
image of the cluster is stored useful for 2D classifier training.

2.4.3 Labeling
Labeling of only RGB images is done and manual bounding
box is defined by marker utility developed specifically.

III.

IV. EXPERIMENTS

3.1 Data
For training, we label all the positive images with their
bounding boxes. Also, more negative instances are generated
from negative sample by using multi-scale image scanning.
We used the RGB-D object dataset from UWash as well as
the self collected dataset.

For instance class, we trained it on around 1000 positive
samples and 35000 negative samples.

TABLE IV.

Class Total Samples True Positives Precision
Mug
(uncluttered

57 38 66%

Cereal-Box
(cluttered)

70 32 45%

Object Tracking Precision Table

3.2 Results
3.2.1 Object Detection
For the two classes – Food and Household items, involving
five objects - Can, Pear, Banana, mug and cereal-box, the
precision values are in Table III. Cereal-box had the least
precision because of the cluttered environment.
Also, segmentation was problem in most of the frames in the
experiment.

3.2.2 Tracking
Test set of tracking was the Mug and the Cereal-box. Mug
had a good precision as the environment was not cluttered
and the detection was good in most of the frames. Thus the
tracking precision is mostly dependent on the detection rate.
Kalman filter can, to an extent, detect the discrepancy but
when false detections are at the extreme corners of a frame, it
would fail.
The results are in Table IV.

REFERENCES
[1] Hema Swetha Koppula, A. Anand, T. Joachims, A. Saxena, “Semantic

Labeling of 3D Point Clouds for Indoor Scenes”
[2] N. Dalal and B. Triggs. Histograms of oriented gradients for human

detection. In CVPR, 2005.
[3] Paul Viola, Michael Jones. Rapid Object Detection using a Boosted

Cascade of Simple Features. Conference on Computer Vision and
Pattern Recognition (CVPR), 2001, pp. 511-518.N. Kawasaki,
“Parametric study of thermal and chemical nonequilibrium nozzle
flow,” M.S. thesis, Dept. Electron. Eng., Osaka Univ., Osaka, Japan,
1993.

[4] Greg Welch and Gary Bishop. An Introduction to the Kalman Filter.
SIGGRAPH, 2001.

[5] T. Rabbania, F. A. van den Heuvelb, G. Vosselmanc , "Segmentation
of point clouds using smoothness constraint", ISPRS Symposium

[6] Burges, Christopher J. C.; A Tutorial on Support Vector Machines for
Pattern Recognition, Data Mining and Knowledge Discovery

http://research.microsoft.com/en-us/um/people/cburges/papers/svmtutorial.pdf�
http://research.microsoft.com/en-us/um/people/cburges/papers/svmtutorial.pdf�

	INTRODUCTION
	Approach
	2.2.1 Features
	2.2.2 Learning Algorithms

	Experiments
	3.2 Results

	References

