
  

 

Abstract— Detecting an object in an image or a video is one 
of the foremost work before proceeding to understand the 
semantics of the scene. Tracking such target objects over 
sequence of frames provide us relevant information about 
where the object is. In this project, we are developing 
algorithms to help make the robot detect household/food items 
in the scenes captured through Microsoft Kinect Sensor. Also, 
we would be using the object tracking algorithms to carve out a 
reliable object classifier. The algorithms use rich set of features 
from both 2D and 3D frames. 

 

 

I. INTRODUCTION 

Object detection and tracking is the first step in 
understanding the environment around the Robot. It is useful 
in detecting the activities and categorizing them based on the 
object it manipulates and interacts with. By tracking objects 
simultaneously we can know the association of objects with 
each other. For example, moving of hand with the milk 
container provides information that both objects were used 
for same activity ‘pouring milk’ and that they work with each 
other. 
 
In 2D images, the two most used algorithm for detecting 
things are Haar Classifier [3] and the HoG [2] features based 
algorithm. But they have mostly been successful on very 
small subset of objects specifically in Face detection and 
pedestrian detection. 
 
We used both 2D and 3D features of the object to classify 
target objects. In 2D, we used both HoG features and color 
histograms in our learning algorithm and used Viewpoint 
Feature Histogram from 3D point cloud data. We used 
Support Vector Machine for learning from 2D frames and k-
Nearest Neighbour approach to learn 3D data. 
 
For tracking the objects, we used Discrete Kalman Filter [4] 
with some heuristically learned parameters. Although linear, 
it was able to track the objects hovering with the human hand 
with good accuracy but was bounded by the false detections. 
 
We ran the experiments on five objects, namely Can, 
Banana, Pear, Mug and Cereal Box with different type of 
environments, cluttered and uncluttered. For food type items 
we got an accuracy of around 70% and for household items it 
was around 55% average precision. Tracking these objects 
was nearly as accurate as the detection algorithms (reasons 
discussed in Section 2.3). 

 
 

II. APPROACH 

We now outline our approach. Our input is Kinect point 
cloud data of the scene. The scenes are typically table-top 
scenes but it could be any other scene too. We then, segment 
out the point cloud clusters of each object in the scene. These 
segmented clusters are the atomic units in our model. Our 
goal is to find the most probable cluster of the target 
category. 
 
Next, we use the output from the detection module as the 
observations to our tracking module. The tracker uses the old 
observations and the current one to predict the least 
erroneous pose (state) of the object. 
 
2.1 Object Segmentation 
Segmentation is the step to get the probable clusters 
containing the target object. In 3D point cloud data, 
segmentation is done using the RANSAC algorithm to 
segment out the plane which could be table-top, floors and 
walls. 
After getting the non-planar points from segmentation, 
clustering is done to get the probable clusters. We 
experimented with two different algorithms: 
 
Euclidean Clustering: The algorithm uses nearest neighbor 
approach to divide an unorganized non-planar point cloud to 
smaller parts. This approach is more prone to over-
segmentation. 
 
Region-Growing[5]: This approach uses smoothness 
constraint for clustering. It uses normals from the surface of 
the point cloud as the method to align points to different 
clusters. This approach is more prone to under-segmentation. 
 
 
 
 
 
       Fig.1 Segmentation 
 
2.2 Object Detection 
Detection of the object from frames of the video is the most 
critical step for the tracking and thus scene understanding. 
We used both 2D and 3D features to capture the inherent 
local and global properties. 
 
The properties we aim to capture through our model are: 
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Visual Appearance. Visual properties like color, texture and 
gradients of intensities provide us good local property of the 
object. 
 
Shape and Geometry. The shape provides the signature of 
the object. The normals from the object surface in 3D data 
provide us such information. This also captures the 
pose/alignment of the object with respect to the viewpoint. 
 

2.2.1  Features 
We used Hue-Saturation color histograms and Histogram of 
oriented gradients as our primary features from the 2D data. 
These features are the local features and provide the intrinsic 
properties of each target object. 
 
In 3D, we used the Viewpoint Features Histogram (VFH) 
features which captures the global orientation of the normals 
from the target’s surface. This acts as the signature of the 
object. 
 

 
 
        Fig.2 2D Classification 
 

2.2.2  Learning Algorithms 
Support Vector Machine[6]: We used the SVM 
implementation for classifying the 2D images based on 
features (which are 2D features here). We used SVM as it 
can work in higher dimension too and is a fast prediction 
algorithm as it produces a very short model (Support vectors) 
for the training data. 
We used svm-light1

 

 implementation and used linear kernel 
function in a regression model. 

The weight vector of the hyper-plane in svm  is captured by 
summing the support vectors (whose lagrange multipliers (α) 
are greater than 0)  using the following equation: 
 
      𝑤𝑤 =  ∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1    
   𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒, 𝑥𝑥𝑖𝑖 = 𝑖𝑖𝑖𝑖ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 
      𝑦𝑦𝑖𝑖 = 𝑖𝑖𝑖𝑖ℎ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
                        𝛼𝛼𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖ℎ 𝑆𝑆𝑆𝑆  
 
Since, we were using the binary classifier, the regression 
values can be taken as the scores assigned to the detections 
of each cluster. Also, we used the Platt’s Algorithm based 
on the LibSVM2

 
1 http://svmlight.joachims.org 

 implementation to get the probability scores 
for each detection by learning the parameters A and B for the 
MLE model using the logistic regression with 4-fold cross 
validation. 

2 http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

 
     𝑃𝑃(𝑖𝑖|𝑖𝑖 𝑜𝑜𝑜𝑜 𝑗𝑗, 𝑥𝑥) =  1

1 + 𝑒𝑒𝐴𝐴𝐴𝐴+𝐵𝐵�  
     𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒, 𝑓𝑓 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
        𝑥𝑥 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
        𝑖𝑖, 𝑗𝑗 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
 
 
k-Nearest Neighbor: The VFH features from 3D frames 
were fed into the k-NN algorithm. The algorithm focuses on 
finding the most probable class based on the closest training 
examples. The distance between target cluster and the trained 
object is taken as score and binned.  We used Flann library 
with k = 6. 
For example, if the distance between apple cluster and 
trained orange is 445, then binning it with 50 width, gives a 
category of 9.0 but a score of 1/0.9, equaling 0.1.  
 

 
         Fig.3 3D Classification 
 
2.2.3  Training 
 
2D Image Training: The 2D classifier is trained on both 
positive and negative images. The positive images are of 
some specific size which differs for each class of object like 
64 x 64 pixels for apple and 64 x 96 for cereal box. The 
trained model from SVM is generated which can be used for 
testing test data. We train on the positive images of same 
window size. The negative samples can be of arbitrary size 
and thus can generate multiple negative samples by scanning 
the given image at different positions. 
 
3D Image Training: The 3D classifier needs the VFH 
features of the images, thus the training is done on specific 
target objects. All the trained features are fed into kNN 
algorithm. 
 

 
Fig 1.a: All three cans are found 

 



  

 
Fig 1.b: distinguishes between Pear and apple 

 

 
Fig 1.c: finds banana as most probable 

 
2.2.4  Testing 
 
Testing is similar to the Training procedure. In testing the 
image for the 2D classification, we traverse the image at 
specific size window but at different sizes. We used 
Pyramid Scaling methodology, where the target image is 
downscaled as a constant multiple and the window size is 
maintained the same. This procedure helps with finding the 
object at different sizes in the same image. Also, the window 
is moved some pixels and not at each pixel so as to not 
increase the runtime exponentially. 
 
2.2.5 Mapping 2D to 3D 
When testing, we change the 3D cluster to 2D cluster. After 
labeling using the 2D classifier, we need to back-project it 
back to its original coordinate. We implemented this 
mapping from 2D data points to 3D points. 
 
For every cluster we have segmented, we first find all the 
VFH features and find the closest training example class 
(with distance). We score it with the inverse of the distance 
from the most probable training instance class. We, then get 
the 2D image representation of the cluster.  
 
2D features described above from this cluster are then used 
to get the label using SVM, which is trained on positive and 
negative image of the specific target object. 
 
2.2.6 Re-estimating Scores 
Each classifier, 2D and 3D, gives the bounding box of the 
detected object. The bounding box is basically the cluster’s 
3D bounding cube while in 2D it’s the rectangular box in 
which object was detected. Sometimes, the segmented cluster 
is not a perfect box around the object but is usually the box 
that contains the object as well as some other connected 
components involving the target object, which is generally 

part of human skeleton with the object like the hand holding 
the mug. To counter it, we do re-estimation of the cluster 
boundaries when the bounding box from 2D and 3D 
classifiers differs greatly, here 3.0 multiple of th 2D box 
width and height.  
The re-estimation creates the new 3D bounding box based on 
2D one projection with some added padding. And score is re-
computed based on the new box. 
 

        
 
      Fig.4 Over-all architecture 
 
2.2.7  Inference 
We used the scoring from both 2D and 3D features to build 
an accumulative inference model. The model is simply the 
sum of the both scores. The k-NN score is just the reciprocal 
of the distance from the closest training example. 
 
2.2.8 Analysis 
 
HoG versus HSV: To see which feature is important where, 
we tested the dataset on two types of features – only HoG 
and HSV + HoG. We did not see the result on just the HSV 
feature as HSV is just a complimentary feature. The results 
are as shown in Table II. 
In all the cases, the precision decreased when used only HoG 
features (we are not using the VFH features here). For 
banana and pear, the precision did not decrease greatly as 
expected as the shape alone is not so discriminative. It might 
be because in the test set the other items as well as 
background was not so similar to pear and banana shape. 
Can, which does not have color as an important feature, did 
quite well without VFH feature. 
 
Euclidean versus Region-growing Clustering: Clustering 
is an important step for object detection and thus choosing 
the right scheme is must for robust detection. We tested the 
some 3D scenes on both of the clustering algorithms 
separately to see which performs best. The results are shown 
in Table I. 
From the results, the region-growing algorithm performs 
slightly better in cluttered space but not major difference in 
accuracy when used in uncluttered space. Thus, only 
difference favoring Region-growing is that it favors under-
segmentation, which sometimes is helpful in bringing up the 
recall. Both of the test set involved the human skeleton 
mingling with the object. 



  

 

TABLE I.   

Class Total Samples Precision 
(Euclidean) 

Precision 
(Region-grow) 

Mug 57 66.7% 65% 
Cereal-Box 70 40% 43% 

    

   Precision Table for different clustering methods 
 

TABLE II.   

Class Total Samples Precision 
(HoG) 

Precision (HoG 
+ HSV) 

Pear 44 50% 52.27% 
Banana 44 38% 40.9% 
Can 44 77.2% 79.4% 

Precision Table for different features 

 
2.3 Object Tracking 
 
Object tracking is done for robust detection as well as to 
counter occlusions. We implemented a Discrete Kalman 
Filter to track the object using the object detections output as 
the observations. 
 
2.3.1 Kalman Filter 
The Kalman filter addresses the general problem of trying to 
estimate the state 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛  of a discrete-time controlled 
process that is governed by the linear equation. 
                 𝑥𝑥𝑘𝑘 = 𝐴𝐴𝑥𝑥𝑘𝑘−1 + 𝑤𝑤𝑘𝑘−1,   𝑤𝑤 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  (1) 
 
with a measurement that is, 
                 𝑧𝑧𝑘𝑘 = 𝐻𝐻𝑥𝑥𝑘𝑘 + 𝑣𝑣𝑘𝑘 ,    𝑣𝑣 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (2) 
 
 
The n x n matrix A in the difference equation equation (1) 
relates the state at the previous time step k-1 to the state at 
the current step k.  
The Kalman filter estimates a process by using a form of 
feedback control: the filter estimates the process state at 
some time and then obtains feedback in the form of (noisy) 
measurements. The time update equations are responsible for 
projecting forward (in time) the current state and error 
covariance estimates to obtain the a priori estimates for the 
next time step. The measurement update equations are 
responsible for the feedback. 
 
 

 

 
        Fig.5 Tracking 

  
       Fig.6a mug tracking 
 

 
      Fig. 6b Cereal-box tracking 
 

 
      Fig. 6c Cereal-box tracking 
 
 
2.3.2 Model 
The model of the Kalman Filter is defined by the State 
matrix A, the measurement matrix H, the process noise Q 
and the measurement noise R. 
 
The state in our model is defined to be the x, y and z position 
of the object as well as the velocity component dx, dy and dz 
which brings the movement of the object into the model. 
Thus, A = ( 𝑥𝑥 𝑦𝑦 𝑧𝑧 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 )𝑇𝑇. 
 
While the measurement matrix H is defined to be ( 𝑥𝑥 𝑦𝑦 𝑧𝑧 )𝑇𝑇 . 
Since there could be two types of observation errors: 



  

 - Displacement error – which is the error in location of the 
  bounding box containing the object in which the    
  prediction is accurate. 
 - False prediction – which is the false detection from   
  object detection module. Here the observation is    
  completely off. 
 
The error in observation could sometime be large and 
sometime be small. Thus the standard deviation chosen for 
the model is 50 pixels. The process noise, Q, based on this is 
1.2 and so is the measurement noise, R. 
 
2.3.3 Tracker 
Prediction of the state is done in two steps- one with time 
update and the measurement update. The prediction step uses 
the state matrix to predict the next step using the equation 
(1). The measurement update steps corrects the prediction 
error by using the observation from the object detector. The 
kalman gain in our case is: 
     𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘−

(𝑃𝑃𝑘𝑘−+ 𝑅𝑅)
, 𝑃𝑃−𝑘𝑘  𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

 
And the new measurement is given by, 
     𝑥𝑥𝑘𝑘 = 𝑥𝑥𝑘𝑘− + 𝐾𝐾𝑘𝑘(𝑧𝑧𝑘𝑘 −  𝑥𝑥𝑘𝑘−) 
 

TABLE III.   

Class Total Samples True Positives Precision 
Food Items 
Pear 42 36 85.7% 
Banana 42 21 50% 
Can 42 30 71.4% 
Household Items 
Mug 
(uncluttered 

57 37 65% 

Cereal-Box 
(cluttered) 

70 30 43% 

 
Object Detection Precision Table 

 
2.4 Dataset Collection and Object Labeling 
 
2.4.1 Collection 
Dataset collection is done by placing the target objects on 
table and taking snapshots using kinect camera at varying 
poses by rotating the object manually. Also, the tilt angle is 
also varied – 10 and 45 degrees. 
 
2.4.2 Dataset Preprocessing 
The collected dataset is preprocessed by segmenting out the 
background and stored as point cloud file. Also, the RGB 
image of the cluster is stored useful for 2D classifier training. 
 
2.4.3 Labeling 
Labeling of only RGB images is done and manual bounding 
box is defined by marker utility developed specifically. 
 

III.  

IV. EXPERIMENTS 

3.1   Data 
For training, we label all the positive images with their 
bounding boxes. Also, more negative instances are generated 
from negative sample by using multi-scale image scanning. 
We used the RGB-D object dataset from UWash as well as 
the self collected dataset. 
 
For instance class, we trained it on around 1000 positive 
samples and 35000 negative samples. 
 

TABLE IV.   

Class Total Samples True Positives Precision 
Mug 
(uncluttered 

57 38 66% 

Cereal-Box 
(cluttered) 

70 32 45% 

 
Object Tracking Precision Table 

3.2  Results 
3.2.1 Object Detection 
For the two classes – Food and Household items, involving 
five objects - Can, Pear, Banana, mug and cereal-box, the 
precision values are in Table III. Cereal-box had the least 
precision because of the cluttered environment. 
Also, segmentation was problem in most of the frames in the 
experiment. 
 
3.2.2 Tracking 
Test set of tracking was the Mug and the Cereal-box. Mug 
had a good precision as the environment was not cluttered 
and the detection was good in most of the frames. Thus the 
tracking precision is mostly dependent on the detection rate. 
Kalman filter can, to an extent, detect the discrepancy but 
when false detections are at the extreme corners of a frame, it 
would fail. 
The results are in Table IV. 
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