
Recursive Grammars for Scene Parsing
a.k.a. RANSACing Offices

Caspar Anderegg (cja58), CS ‘12
Bill Best (wpb47), MEng ‘12

with Abhishek Anand

May 15, 2012

Abstract

Our goal was to use recursive grammars to construct parse trees within seg-
mented point-clouds. Similar methods have been successfully used in flat images,
but never with 3D data. We have written a virtual scanner to convert Wavefront ob-
ject files to point-clouds. Additionally, we created a module to segment point-clouds
using a generalized RANSAC algorithm. Both were incorporated in a ROS package
that we are contributing to the official listing. Our RANSAC module interfaces
directly with Abhishek’s system for parse-tree construction and labeling.

1 Introduction

Many algorithms for object identification rely on single pixels or small collections
of pixels identified as important features. These systems usually do not take into
account the relations between features, or the shape of the overall objects. When
these systems segment an image, there is generally not a one-to-one correspondence
between segments and objects in the scene. Multiple different objects might be
included in a single segment, or a single object may be split into many segments.
Cognitive science research in human perception has shown that there is ongoing
feedback between recognition areas and segmentation areas of the brain.

After splitting an object, we use a recursive grammar to merge segments. Atomic
segments are merged into contiguous components (for example a plane forming the
front of a computer tower), these components will be merged into complete objects.
Such a segment hierarchy allows for a wholre new class of features to be used in
object identification.

2 Related Work

Previous projects [Girshick, R., P. Felzenswalb, and D. McAllester. 2011] and [Y.
Zhao, S.Z. 2011] have successfully used recursive grammars for object recognition in
two dimensional images. These projects generated many possible candidate parse
trees, then used maximum likelihood estimation to select a most probable candidate
given the scene. Neither project attempted to use 3D data.

1

Abhishek Anand and Hema Swetha Koppula have done work on scene under-
standing from Kinect point-cloud data. They are able to use local visual appearance
and shape cues to label objects in home and office scenes. Abhishek has created
a graphical interface to simplify the graphical construction and labeling of parse
trees, given segmented point-clouds. As part of the project, we interface with this
existing software.

3 Approach

3.1 Data Acquisition

One of the major challenges was data acquisition. We wanted to use digital mod-
els from the Google Sketchup 3D Warehouse, converted into point-clouds. These
files are downloaded in a proprietary Sketchup format, but can be exported into
a Wavefront Object Files (.obj) and Material Libraries (.mtl). We had intended
to find a ROS package that would convert .obj files into Point-cloud Library .pcd

files, but were unable to find a suitable converter. The best we could find was a
python script that simply stripped out face information and left vertices.

Figure 1: A synthetically generated point-cloud (from several angles). The cloud was
rendered from model taken from Google Sketchup 3D warehouse.It uses all three occlusion
models, and

Thus, we wrote a virtual scanner to convert .obj/.mtl files into .pcd files.
The scanner used barycentric coordinates to sample each face. The view direction,
sample rate, and and other parameters can be set via command line arguments.

The scanner supports several noise models: no noise, Gaussian noise, and Kinect
camera noise as described in [Liu, Yiping. 2012]. The Kinect noise model is one

2

dimensional Gaussian noise (in the direction of the view vector) that scales pro-
portional to the distance from the camera. Where ~v is the view direction, ~e is the
location of the eye, and ~p is the location of the rendered point in space, the noise
follows the equation below:

Noise ∼ N (0, 3.5× 10−3 · ||proj~v(~e− ~p)||2)~v

The scanner also supports three levels of visibility culling. At the most basic
level, backface culling allows the removal of any faces with normals that point
away from the camera. The next level up is occlusion culling, allowing faces to be
removed if none of their vertices are visible to the camera. The highest level is trace
culling, which checks whether each point is visible to the camera. These occlusion
models can be used together to choose an appropriate level of speed and realism.

We have downloaded almost 200 3D models in five categories of office objects.
These can be converted to point-clouds as needed, using different perspectives and
noise profiles. An example point-cloud generated by our virtual scanner can be
seen in Figure 1.

Figure 2: Two point-clouds of a computer tower. The image on the left shows a point-
cloud generated from our virtual scanner. The image on the right shows the same point-
cloud after being segmented by our generalized RANSAC algorithm.

3.2 Point-cloud Segmentation

We wanted to run a generalized RANSAC segmentation on these point-clouds, as
outlined in [Schnabel, Ruwen, Roland Wahl, and Reinhard Klein. 2007]. This gen-
eral RANSAC needed to be able to fit multiple shapes (planes, spheres, cylinders,

3

etc.). We hoped to find a ROS package that would implement such a general-
ized RANSAC, but again we were unable to find a suitable package. All of the
implementations we found fit only planes.

We created a ROS package to run a generalized iterative RANSAC segmentation
of a point-cloud file. The algorithm generates a tree of candidate shape combina-
tions, then performs a breadth-first search of this tree to identify the smallest set
of shapes to fit some critical majority of the points in the model.

Figure 3: Two point-clouds of a computer printer. Again the left-hand side is the gen-
erated point-cloud, and the right-hand side is the segmented cloud. Note the rounded
corners have been fit with cylinders.

For our RANSAC algorithm, we used three basic shapes: planes, spheres, and
cylinders. Planes and spheres were already available to us as functions in PCL
for random consensus, so implementing them was relatively simple. We decided
not to implement shapes such as rectangular prisms since they would already be
representable by multiple planes and, given the number of degrees of freedom in a
rectangular prism, would take too long to converge on a final answer. We selected
cylinders as the third shape because we found that after planes, the next most
common shape was cylinders. While a cylindrical shape in the model could be
represented by multiple planes, we elected to take the route of fitting a cylinder
instead. While fitting a cylinder takes longer (due to the number of degrees of
freedom in a cylinder) we were trying to fit fewer shapes overall, so fitting a cylinder
instead of multiple planes was the better option. Since we were working with a
specific subset of possible objects — office objects — we were able to notice that

4

shapes other than planes, sphere, or cylinders were rare enough that we could
easily represent them as multiple shapes rather than as their true shape, without
significant loss of time or final efficacy in Abhishek’s code.

There are some useful shapes that are currently not supported by PCL (the
cone and the torus), but which are scheduled to be implemented at some future
date. Our code contains a framework that allows these shapes to be easilly included
once they are implemented.

3.3 Labeling and Parse-tree Construction

For parse tree construction and labeling, we interface with Abhishek’s system. The
RANSAC module outputs a segmented point-cloud, a neighbor map between seg-
ments, and an initial parse tree. These files can be passed directly into Abhishek’s
cfg3d ParseTreeLabelerF for parse tree construction and labeling.

Figure 4: An example parse tree created from the tower shown in Figure 2.

The constructed parse trees are output in .dot format. This allows parse trees
to be build or edited by hand if required. For an example parse tree constructed
with the labeler, see Figure 4. The grammar extracted from the parse tree might
look as follows:

ROOT → CPUTower
CPUTower → CPUTop CPUFront CPUSide
CPUFront CPUSide → CPUFront CPUSide
CPUTop → Plane
CPUFront → Plane
CPUSide → Plane
Plane → Plane plane terminal | plane terminal

(For convention, nonterminal symbols begin with uppercase letters while terminals
are teletyped and begin with lowercase letters.)

5

3.4 ROS Package and Dataset

As part of the project, we created a ROS package that we are in the process of
getting on the official ROS listing. We also created a synthetic data set with over
1000 point-clouds rendered from almost 200 Sketchup objects.

4 Results

We performed trials to see how many shapes the RANSAC module used to fit
different classes of objects. Results can be found in the table below.

Type Average Shapes

Keyboards 3.61

Computer Mice 2.89

CPU Towers 6.30

Computer Monitors 5.63

Printers 7.47

In the RANSAC module, we found the percentage of points that were not fit by
the RANSAC model (the number deemed outliers) was on average 3.70%. Results
were computed with a small threshold and outlier cutoff value, for detail on a single
object. A larger threshold and and outlier cutoff value would give detail closer to
that of a full scene.

5 Conclusion

While we were not able to accomplish everything we had planned due to time
restrictions, overall we found relatively good results. As noted above, we were able
to reduce the number of points not associated with a shape to about 3.7% per object.
We feel this is a reasonable allowance of error for the needs of the project going
forward. Further, we were able to produce point-cloud sets with a minimal number
of constituent shapes. For example, a keyboard is comprised of (on average) 3.61
shapes. This would be a plane for the front edge, a plane for the top of the body, a
plane for all the keys, and sometimes an extra plane depending on the angle. This
is basically the minimum number of shapes that could be created for the object.
We see this to be common among all objects. Having a minimum number of shapes
is important because it allows us to get a more accurate representation of what the
object is comprised of, more needless shapes would be akin to having more noise.

We were also able to successfully coordinate our code with the current labeling
code. The RANSAC program allows us to associate more shapes to the objects we
want to label, giving us a deeper understanding of the objects themselves, as well
as the scene they are in.

Finally, we were also pleased with our model scanner, which allowed us to easily
create PCD files from obj files. It produced accurate point-cloud images to which
we were able to add noise to simulate Kinect noise. This program should allow
for production of PCD files from multiple angles, without spending all the time
capturing the images with a real Kinect.

We have combined these in a ROS package, that we hope to have on the official
listing soon.

6

6 Future Work

Going forward, we need to create a dataset of parse trees using the labeler. Using
this dataset, we could extract a grammar of shapes and relations between shapes
which we can train using an SVM (similar to SVM-cfg by Thorsten Joachims).
From this, we hope to be able to RANSAC an entire office and label all objects in
it with a reasonable degree of accuracy.

Even more exciting, we would be able to parse relations between objects them-
selves. This would allow an even deeper understanding of the composition scene.

7 Acknowledgements

We would like to thank the following individuals:

Ashutosh Saxena, course professor CS 4758 — Cornell University

Abhishek Anand, Ph.D. mentor — Cornell University

Ken Conley, ROS Liaison — WillowGarage

References

Anand, Abhishek, Sherwin Li, and Paul Heran Yang. Understanding 3D Scenes
Using Visual Grammars. Cornell University, Ithaca: 15 December 2011.

Girshick, R., P. Felzenswalb, and D. McAllester. Object Detection with grammar
models. NIPS: 2011.

Liu, Yiping. Precision of the Kinect Sensor. ROS Wiki. 2011. Web. 2 March 2012.

Schnabel, Ruwen, Roland Wahl, and Reinhard Klein. Efficient RANSAC for
Point-Cloud Shape Detection. Computer Graphics Forum: 2007.

Y. Zhao, S.Z. Image parsing with stochastic scene grammar. NIPS: 2011

7

