Linear Regression: The Objective Function

- Parameter \mathbf{w} that satisfies $y_{i}=\mathbf{w}^{T} \mathbf{x}_{i}$ exactly for each i may not exist
- So we look for the closest approximation
- Specifically, w that minimizes the following sum-of-squared-differences between the truth $\left(y_{i}\right)$ and the predictions ($\mathbf{w}^{T} \mathbf{x}_{i}$), just as we did for the one-dimensional case:

$$
E(\mathbf{w})=\frac{1}{2} \sum_{i=1}^{N}\left(y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right)^{2}
$$

