Linear Regression: One-Dimensional Case

- Given: a set of N input-response pairs
- The inputs (x) and the responses (y) are one dimensional scalars
- Goal: Model the relationship between x and y

Linear Regression: One-Dimensional Case

- Let's assume the relationship between x and y is linear

Linear Regression: One-Dimensional Case

- Let's assume the relationship between x and y is linear
- Linear relationship can be defined by a straight line with parameter w
- Equation of the straight line: $y=w x$

Linear Regression: One-Dimensional Case

- The line may not fit the data exactly

Linear Regression: One-Dimensional Case

- The line may not fit the data exactly
- But we can try making the line a reasonable approximation

Linear Regression: One-Dimensional Case

- The line may not fit the data exactly
- But we can try making the line a reasonable approximation
- Error for the pair $\left(x_{i}, y_{i}\right)$ pair: $e_{i}=y_{i}-w x_{i}$

Linear Regression: One-Dimensional Case

- The line may not fit the data exactly
- But we can try making the line a reasonable approximation
- Error for the pair $\left(x_{i}, y_{i}\right)$ pair: $e_{i}=y_{i}-w x_{i}$
- The total squared error: $E=\sum_{i=1}^{N} e_{i}^{2}=\sum_{i=1}^{N}\left(y_{i}-w x_{i}\right)^{2}$

Linear Regression: One-Dimensional Case

- The line may not fit the data exactly
- But we can try making the line a reasonable approximation
- Error for the pair $\left(x_{i}, y_{i}\right)$ pair: $e_{i}=y_{i}-w x_{i}$
- The total squared error: $E=\sum_{i=1}^{N} e_{i}^{2}=\sum_{i=1}^{N}\left(y_{i}-w x_{i}\right)^{2}$
- The best fitting line is defined by w minimizing the total error E

Linear Regression: One-Dimensional Case

- The line may not fit the data exactly
- But we can try making the line a reasonable approximation
- Error for the pair $\left(x_{i}, y_{i}\right)$ pair: $e_{i}=y_{i}-w x_{i}$
- The total squared error: $E=\sum_{i=1}^{N} e_{i}^{2}=\sum_{i=1}^{N}\left(y_{i}-w x_{i}\right)^{2}$
- The best fitting line is defined by w minimizing the total error E
- Just requires a little bit of calculus to find it (take derivative, equate to zero..)

Linear Regression: In Higher Dimensions

- Analogy to line fitting: In higher dimensions, we will fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

Linear Regression: In Higher Dimensions

- Analogy to line fitting: In higher dimensions, we will fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

- Many planes are possible. Which one is the best?

Linear Regression: In Higher Dimensions

- Analogy to line fitting: In higher dimensions, we will fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

- Many planes are possible. Which one is the best?
- Intuition: Choose the one which is (on average) closest to the responses Y

Linear Regression: In Higher Dimensions

- Analogy to line fitting: In higher dimensions, we will fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

- Many planes are possible. Which one is the best?
- Intuition: Choose the one which is (on average) closest to the responses Y
- Linear regression uses the sum-of-squared error notion of closeness

Linear Regression: In Higher Dimensions

- Analogy to line fitting: In higher dimensions, we will fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

- Many planes are possible. Which one is the best?
- Intuition: Choose the one which is (on average) closest to the responses Y
- Linear regression uses the sum-of-squared error notion of closeness
- Similar intuition carries over to higher dimensions too

Linear Regression: In Higher Dimensions

- Analogy to line fitting: In higher dimensions, we will fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

- Many planes are possible. Which one is the best?
- Intuition: Choose the one which is (on average) closest to the responses Y
- Linear regression uses the sum-of-squared error notion of closeness
- Similar intuition carries over to higher dimensions too
- Fitting a D-dimensional hyperplane to the data

Linear Regression: In Higher Dimensions

- Analogy to line fitting: In higher dimensions, we will fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

- Many planes are possible. Which one is the best?
- Intuition: Choose the one which is (on average) closest to the responses Y
- Linear regression uses the sum-of-squared error notion of closeness
- Similar intuition carries over to higher dimensions too
- Fitting a D-dimensional hyperplane to the data
- Hard to visualize in pictures though..

Linear Regression: In Higher Dimensions

- Analogy to line fitting: In higher dimensions, we will fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2 -dim. plane to the data

- Many planes are possible. Which one is the best?
- Intuition: Choose the one which is (on average) closest to the responses Y
- Linear regression uses the sum-of-squared error notion of closeness
- Similar intuition carries over to higher dimensions too
- Fitting a D-dimensional hyperplane to the data
- Hard to visualize in pictures though..
- The hyperplane is defined by parameters \mathbf{w} (a $D \times 1$ weight vector)

Linear Regression: In Higher Dimensions (Formally)

- Given training data $\mathcal{D}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$
- Inputs \mathbf{x}_{i} : D-dimensional vectors $\left(\mathbb{R}^{D}\right)$, responses y_{i} : scalars (\mathbb{R})

Linear Regression: In Higher Dimensions (Formally)

- Given training data $\mathcal{D}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$
- Inputs \mathbf{x}_{i} : D-dimensional vectors $\left(\mathbb{R}^{D}\right)$, responses $y_{i}:$ scalars (\mathbb{R})
- The linear model: response is a linear function of the model parameters

$$
y=f(\mathbf{x}, \mathbf{w})=b+\sum_{j=1}^{M} w_{j} \phi_{j}(\mathbf{x})
$$

Linear Regression: In Higher Dimensions (Formally)

- Given training data $\mathcal{D}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$
- Inputs \mathbf{x}_{i} : D-dimensional vectors $\left(\mathbb{R}^{D}\right)$, responses $y_{i}:$ scalars (\mathbb{R})
- The linear model: response is a linear function of the model parameters

$$
y=f(\mathbf{x}, \mathbf{w})=b+\sum_{j=1}^{M} w_{j} \phi_{j}(\mathbf{x})
$$

- w_{j} 's and b are the model parameters (b is an offset)
- Parameters define the mapping from the inputs to responses

Linear Regression: In Higher Dimensions (Formally)

- Given training data $\mathcal{D}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$
- Inputs \mathbf{x}_{i} : D-dimensional vectors $\left(\mathbb{R}^{D}\right)$, responses $y_{i}:$ scalars (\mathbb{R})
- The linear model: response is a linear function of the model parameters

$$
y=f(\mathbf{x}, \mathbf{w})=b+\sum_{j=1}^{M} w_{j} \phi_{j}(\mathbf{x})
$$

- w_{j} 's and b are the model parameters (b is an offset)
- Parameters define the mapping from the inputs to responses
- Each ϕ_{j} is called a basis function
- Allows change of representation of the input \times (often desired)

Linear Regression: In Higher Dimensions

The linear model:

$$
y=b+\sum_{j=1}^{M} w_{j} \phi_{j}(\mathbf{x})=b+\mathbf{w}^{T} \phi(\mathbf{x})
$$

- $\phi=\left[\phi_{1}, \ldots \phi_{M}\right]$
- $\mathbf{w}=\left[w_{1}, \ldots, w_{M}\right]$, the weight vector (to learn using the training data)

Linear Regression: In Higher Dimensions

The linear model:

$$
y=b+\sum_{j=1}^{M} w_{j} \phi_{j}(\mathbf{x})=b+\mathbf{w}^{T} \phi(\mathbf{x})
$$

- $\phi=\left[\phi_{1}, \ldots \phi_{M}\right]$
- $\mathbf{w}=\left[w_{1}, \ldots, w_{M}\right]$, the weight vector (to learn using the training data)
- We consider the simplest case: $\phi(\mathbf{x})=\mathbf{x}$
- $\phi_{j}(\mathbf{x})$ is the j-th feature of the data (total D features, so $M=D$)

Linear Regression: In Higher Dimensions

The linear model:

$$
y=b+\sum_{j=1}^{M} w_{j} \phi_{j}(\mathbf{x})=b+\mathbf{w}^{\top} \phi(\mathbf{x})
$$

- $\phi=\left[\phi_{1}, \ldots \phi_{M}\right]$
- $\mathbf{w}=\left[w_{1}, \ldots, w_{M}\right]$, the weight vector (to learn using the training data)
- We consider the simplest case: $\phi(\mathbf{x})=\mathbf{x}$
- $\phi_{j}(\mathbf{x})$ is the j-th feature of the data (total D features, so $M=D$)
- The linear model becomes

$$
y=b+\sum_{j=1}^{D} w_{j} x_{j}=b+\mathbf{w}^{T} \mathbf{x}
$$

Linear Regression: In Higher Dimensions

The linear model:

$$
y=b+\sum_{j=1}^{M} w_{j} \phi_{j}(\mathbf{x})=b+\mathbf{w}^{T} \phi(\mathbf{x})
$$

- $\phi=\left[\phi_{1}, \ldots \phi_{M}\right]$
- $\mathbf{w}=\left[w_{1}, \ldots, w_{M}\right]$, the weight vector (to learn using the training data)
- We consider the simplest case: $\phi(\mathbf{x})=\mathbf{x}$
- $\phi_{j}(\mathbf{x})$ is the j-th feature of the data (total D features, so $M=D$)
- The linear model becomes

$$
y=b+\sum_{j=1}^{D} w_{j} x_{j}=b+\mathbf{w}^{T} \mathbf{x}
$$

- Note: Nonlinear relationships between \mathbf{x} and y can be modeled using suitably chosen ϕ_{j} 's (more when we cover Kernel Methods)

Linear Regression: In Higher Dimensions

- Given training data $\mathcal{D}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$
- Fit each training example $\left(\mathbf{x}_{i}, y_{i}\right)$ using the linear model

$$
y_{i}=b+\mathbf{w}^{T} \mathbf{x}_{i}
$$

Linear Regression: In Higher Dimensions

- Given training data $\mathcal{D}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$
- Fit each training example $\left(\mathbf{x}_{i}, y_{i}\right)$ using the linear model

$$
y_{i}=b+\mathbf{w}^{T} \mathbf{x}_{i}
$$

- A bit of notation abuse: write $\mathbf{w}=[b, \mathbf{w}]$, write $\mathbf{x}_{i}=\left[1, \mathbf{x}_{i}\right]$

$$
y_{i}=\mathbf{w}^{T} \mathbf{x}_{i}
$$

