
Linear Regression: One-Dimensional Case

Given: a set of N input-response pairs

The inputs (x) and the responses (y) are one dimensional scalars

Goal: Model the relationship between x and y
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Linear Regression: One-Dimensional Case

Let’s assume the relationship between x and y is linear
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Linear Regression: One-Dimensional Case

Let’s assume the relationship between x and y is linear

Linear relationship can be defined by a straight line with parameter w

Equation of the straight line: y = wx
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Linear Regression: One-Dimensional Case

The line may not fit the data exactly
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The line may not fit the data exactly

But we can try making the line a reasonable approximation

Error for the pair (xi , yi ) pair: ei = yi − wxi
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Linear Regression: One-Dimensional Case

The line may not fit the data exactly

But we can try making the line a reasonable approximation

Error for the pair (xi , yi ) pair: ei = yi − wxi

The total squared error: E =
∑N

i=1 e
2
i =

∑N
i=1(yi − wxi )2
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Linear Regression: One-Dimensional Case
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Error for the pair (xi , yi ) pair: ei = yi − wxi

The total squared error: E =
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The best fitting line is defined by w minimizing the total error E
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Linear Regression: One-Dimensional Case

The line may not fit the data exactly

But we can try making the line a reasonable approximation

Error for the pair (xi , yi ) pair: ei = yi − wxi

The total squared error: E =
∑N

i=1 e
2
i =

∑N
i=1(yi − wxi )2

The best fitting line is defined by w minimizing the total error E

Just requires a little bit of calculus to find it (take derivative, equate to zero..)
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Linear Regression: In Higher Dimensions

Analogy to line fitting: In higher dimensions, we will fit hyperplanes

For 2-dim. inputs, linear regression fits a 2-dim. plane to the data
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Linear Regression: In Higher Dimensions

Analogy to line fitting: In higher dimensions, we will fit hyperplanes

For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

Many planes are possible. Which one is the best?

Intuition: Choose the one which is (on average) closest to the responses Y
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Intuition: Choose the one which is (on average) closest to the responses Y
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Many planes are possible. Which one is the best?
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Analogy to line fitting: In higher dimensions, we will fit hyperplanes

For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

Many planes are possible. Which one is the best?

Intuition: Choose the one which is (on average) closest to the responses Y
Linear regression uses the sum-of-squared error notion of closeness
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Linear Regression: In Higher Dimensions

Analogy to line fitting: In higher dimensions, we will fit hyperplanes

For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

Many planes are possible. Which one is the best?

Intuition: Choose the one which is (on average) closest to the responses Y
Linear regression uses the sum-of-squared error notion of closeness

Similar intuition carries over to higher dimensions too
Fitting a D-dimensional hyperplane to the data
Hard to visualize in pictures though..

The hyperplane is defined by parameters w (a D × 1 weight vector)
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Linear Regression: In Higher Dimensions (Formally)

Given training data D = {(x1, y1), . . . , (xN , yN)}

Inputs xi : D-dimensional vectors (RD), responses yi : scalars (R)
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Linear Regression: In Higher Dimensions (Formally)

Given training data D = {(x1, y1), . . . , (xN , yN)}

Inputs xi : D-dimensional vectors (RD), responses yi : scalars (R)

The linear model: response is a linear function of the model parameters

y = f (x,w) = b +
M
∑

j=1

wjφj(x)

(CS5350/6350) Linear Models for Regression September 6, 2011 6 / 17



Linear Regression: In Higher Dimensions (Formally)

Given training data D = {(x1, y1), . . . , (xN , yN)}

Inputs xi : D-dimensional vectors (RD), responses yi : scalars (R)

The linear model: response is a linear function of the model parameters

y = f (x,w) = b +
M
∑

j=1

wjφj(x)

wj ’s and b are the model parameters (b is an offset)
Parameters define the mapping from the inputs to responses
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Linear Regression: In Higher Dimensions (Formally)

Given training data D = {(x1, y1), . . . , (xN , yN)}

Inputs xi : D-dimensional vectors (RD), responses yi : scalars (R)

The linear model: response is a linear function of the model parameters

y = f (x,w) = b +
M
∑

j=1

wjφj(x)

wj ’s and b are the model parameters (b is an offset)
Parameters define the mapping from the inputs to responses

Each φj is called a basis function
Allows change of representation of the input x (often desired)
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Linear Regression: In Higher Dimensions

The linear model:

y = b +
M
∑

j=1

wjφj(x) = b +wTφ(x)

φ = [φ1, . . . .φM ]

w = [w1, . . . ,wM ], the weight vector (to learn using the training data)
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The linear model:

y = b +
M
∑

j=1

wjφj(x) = b +wTφ(x)

φ = [φ1, . . . .φM ]

w = [w1, . . . ,wM ], the weight vector (to learn using the training data)

We consider the simplest case: φ(x) = x
φj(x) is the j-th feature of the data (total D features, so M = D)
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Linear Regression: In Higher Dimensions

The linear model:

y = b +
M
∑

j=1

wjφj(x) = b +wTφ(x)

φ = [φ1, . . . .φM ]

w = [w1, . . . ,wM ], the weight vector (to learn using the training data)

We consider the simplest case: φ(x) = x
φj(x) is the j-th feature of the data (total D features, so M = D)

The linear model becomes

y = b +
D
∑

j=1

wjxj = b +wTx

Note: Nonlinear relationships between x and y can be modeled using
suitably chosen φj ’s (more when we cover Kernel Methods)
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Linear Regression: In Higher Dimensions

Given training data D = {(x1, y1), . . . , (xN , yN)}

Fit each training example (xi , yi ) using the linear model

yi = b +wTxi
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Linear Regression: In Higher Dimensions

Given training data D = {(x1, y1), . . . , (xN , yN)}

Fit each training example (xi , yi ) using the linear model

yi = b +wTxi

A bit of notation abuse: write w = [b,w], write xi = [1, xi ]

yi = wTxi
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