- Word sense disambiguation
 - » Background from linguistics
 - Lexical semantics
 - » On-line resources
 - » Computational approaches

WordNet

- Handcrafted database of lexical relations
- Three separate databases: nouns; verbs; adjectives and adverbs
- Each database is a set of lexical entries (according to unique orthographic forms)
 - Set of senses associated with each entry

Category	# Unique Forms	# of Senses
Noun	117798	82115
Verb	11529	13767
Adjective	21479	18156
Adverb	4481	3621

WordNet Search - 3.1

WordNet Browser

Word to search for: bass

Search WordNet

Display Options: (Select option to change) 🛟 Change

Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations Display options for sense: (gloss) "an example sentence"

Noun

- <u>S:</u> (n) **bass** (the lowest part of the musical range)
- <u>S:</u> (n) bass, <u>bass part</u> (the lowest part in polyphonic music)
- <u>S:</u> (n) bass, <u>basso</u> (an adult male singer with the lowest voice)
- <u>S:</u> (n) <u>sea bass</u>, **bass** (the lean flesh of a saltwater fish of the family Serranidae)
- <u>S:</u> (n) <u>freshwater bass</u>, **bass** (any of various North American freshwater fish with lean flesh (especially of the genus Micropterus))
- <u>S:</u> (n) bass, <u>bass voice</u>, <u>basso</u> (the lowest adult male singing voice)
- <u>S:</u> (n) **bass** (the member with the lowest range of a family of musical instruments)
- <u>S:</u> (n) **bass** (nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)

Adjective

• <u>S:</u> (adj) **bass**, <u>deep</u> (having or denoting a low vocal or instrumental range) "a deep voice"; "a bass voice is lower than a baritone voice"; "a bass clarinet"

Some WordNet Statistics

Avg Polysemy w/o monosemous

Part-of-speech	Avg Polysemy	words
Noun	1.24	2.79
Verb	2.17	3.57
Adjective	1.40	2.71
Adverb	1.25	2.50

Distribution of senses

Zipf distribution of verb senses

WordNet relations

Nouns

Relation	Definition	Example
Hypernym	From concepts to superordinates	$break fast \rightarrow meal$
Hyponym	From concepts to subtypes	$meal \rightarrow hunch$
Has-Member	From groups to their members	$faculty \rightarrow professor$
Member-Of	From members to their groups	$copilot \rightarrow crew$
Has-Part	From wholes to parts	$table \rightarrow leg$
Part-Of	From parts to wholes	$course \rightarrow meal$
Antonym	Opposites	leader \rightarrow follower

Verbs

Relation	Definition	Example
Hypernym	From events to superordinate events	$fly \rightarrow travel$
Troponym	From events to their subtypes	$walk \rightarrow stroll$
Entails	From events to the events they entail	snore \rightarrow sleep
Antonym	Opposites	$increase \iff decrease$

Adjectives/adverbs

Relation	Definition	Example
Antonym	Opposite	heavy \iff light
Adverb	Opposite	quickly \iff slowly

- Next lectures
 - Word sense disambiguation
 - » Background from linguistics
 - Lexical semantics
 - » On-line resources
 - » Computational approaches

CS4740 Natural Language Processing

Last classes

Intro to lexical semantics

- Lexical semantic resources: WordNet
- Next
- Word sense disambiguation
 - » Dictionary-based approaches
 - » Supervised machine learning methods
 - » WSD evaluation
 - » Weakly supervised methods

Word sense disambiguation

- Given a *fixed* set of senses associated with a lexical item, determine which sense applies to a particular instance of the lexical item in running text.
- Two fundamental approaches
 - WSD occurs during semantic analysis as a side-effect of the elimination of ill-formed semantic representations

Stand-alone approach

- » WSD is performed independent of, and prior to, compositional semantic analysis
- » Makes minimal assumptions about what information will be available from other NLP processes
- » Applicable in large-scale practical applications

Dictionary-based approaches

- Rely on machine readable dictionaries
- Initial implementation of this kind of approach is due to Michael Lesk (1986)
 - Given a word *W* to be disambiguated in context C
 - » Retrieve all of the sense definitions for W, S_W , from the MRD
 - » Compare each s in S_W to D_C --- all of the dictionary definitions of all words in C
 - » Select the sense s with the most content-word overlap with D_C

Example

- Word: cone
- Context: *pine* **pine cone**
- Sense definitions
 - *pine* 1 kind of evergreen tree with needle-shaped leaves 2 waste away through sorrow or illness
 - *CONE* 1 solid body which narrows to a point 2 something of this shape whether solid or hollow
 - 3 fruit of certain evergreen trees
- Accuracy of 50-70% on short samples of text from *Pride and Prejudice* and an AP newswire article.

CS4740 Natural Language Processing

Last classes

Intro to lexical semantics

- Lexical semantic resources: WordNet
- Next
 - Word sense disambiguation
 - » Dictionary-based approaches
 - » Supervised machine learning methods
 - » WSD evaluation
 - » Weakly supervised methods

Machine learning approaches

- Machine learning paradigms for WSD
 - Supervised inductive learning
 - » classification
 - Bootstrapping
 - Unsupervised
- Emphasis is on acquiring the knowledge needed for the task from data, rather than from human analysts.

Supervised ML framework

Running example

An electric guitar and **bass** player stand off to one side, not really part of the scene, just as a sort of nod to gringo expectations perhaps.

- 1 Fish sense
- 2 Musical sense
- 3 ..

Feature vector representation

- W.r.t. the **target**, i.e. the word to be disambiguated
- Describe context : portion of the surrounding text
 - Select a "window" size
 - Preprocessing:
 - » Tagged with part-of-speech information
 - » Stemming or morphological processing
 - » Possibly some partial parsing
- Extract features from the context (and possibly target)
 - Attribute-value pairs
 - » Numeric, boolean, categorical, ...

Collocational features

- Encode information about the lexical inhabitants of *specific* positions located to the left or right of the target word.
 - E.g. the word, its root form, its part-of-speech
 - An electric <u>guitar and **bass** player stand</u> off to one side, not really part of the scene, just as a sort of nod to gringo expectations perhaps.

pre2-wordpre2-pospre1-wordpre1-posfol1-wordfol2-wordfol2-posguitarNN1andCJCplayerNN1standVVB

Co-occurrence features

- Encodes information about neighboring words, ignoring exact positions.
 - Attributes: words highly associated with one of the senses
 - Values: number of times the word occurs in a region surrounding the target word
 - Select a small number of frequently used content words for use as features
 - » *n* most frequent content words from a collection of *bass* sentences drawn from the WSJ: *fishing, big, sound, player, fly, rod, pound, double, runs, playing, guitar, band*
 - » window of size 10

fishing?	big?	sound?	player?	<u>fly</u> ?	rod?	pound?	<u>double</u> ?	guitar?	band?
0	0	0	1	0	0	0	0	1	0

Labeled training example

 An electric <u>guitar and **bass** player stand</u> off to one side, not really part of the scene, just as a sort of nod to gringo expectations perhaps.

pre2-word pre2-pos pre1-word pre1-pos fol1-word fol1-pos fol2-word fol2-pos guitar NN1 and CJC player NN1 stand VVB fishing? big? sound? player? fly? rod? pound? double? ... guitar? band? $0 \quad 0 \quad 0 \quad 0 \quad 0$

: music

guitar, NN1, and, CJC, player, NN1, stand, VVB, 0, 0, 0, 1, 0, ..., 1, 0 : music

Inductive ML framework

Decision list classifiers

- Decision lists: equivalent to simple case statements.
 - Classifier consists of a sequence of tests to be applied to each input example/vector; returns a word sense.
 - Each test can check the value of one feature
- Continue only until the first applicable test.
- Default test returns the majority sense.

Decision list example

Binary decision: fish bass vs. musical bass

Rule		Sense
<i>fish</i> within window	\Rightarrow	bass ¹
striped bass	\Rightarrow	bass ¹
guitar within window	\Rightarrow	bass ²
bass player	\Rightarrow	bass ²
piano within window	\Rightarrow	bass ²
tenor within window	\Rightarrow	bass ²
sea bass	\Rightarrow	bass ¹
play/V bass	\Rightarrow	bass ²
river within window	\Rightarrow	bass ¹
violin within window	\Rightarrow	bass ²
salmon within window	\Rightarrow	bass ¹
on bass	\Rightarrow	bass ²
bass are	\Rightarrow	bass ¹

Learning decision lists

- Consists of *generating* and *ordering* individual tests based on the characteristics of the training data
- Generation: every feature-value pair constitutes a test
- Ordering: based on accuracy on the training set

$$abs\left(\log \frac{P(Sense_1 \mid f_i = v_j)}{P(Sense_2 \mid f_i = v_j)}\right)$$

Associate the appropriate sense with each test

Inductive ML framework

CS4740 Natural Language Processing

Last classes

Intro to lexical semantics

- Lexical semantic resources: WordNet
- Next
 - Word sense disambiguation
 - » Dictionary-based approaches
 - » Supervised machine learning methods
 - » WSD evaluation
 - » Weakly supervised methods

WSD Evaluation

- Corpora:
 - *line* corpus
 - Yarowsky's 1995 corpus
 - » 12 words (plant, space, bass, ...)
 - » ~4000 instances of each
 - Ng and Lee (1996)
 - » 121 nouns, 70 verbs (most frequently occurring/ambiguous); WordNet senses
 - » 192,800 occurrences
 - SEMCOR (Landes et al. 1998)
 - » Portion of the Brown corpus tagged with WordNet senses
 - SENSEVAL (Kilgarriff and Rosenzweig, 2000)
 - » Annual performance evaluation conference
 - » Provides an evaluation framework (Kilgarriff and Palmer, 2000)
- Baseline: most frequent sense

Metrics

Precision

- # correct / # of predictions

Recall

– # correct / # of examples to disambiguate

WSD Evaluation

- Metrics
 - Precision
 - » Nature of the senses used has a huge effect on the results
 - » E.g. results using coarse distinctions cannot easily be compared to results based on finer-grained word senses
 - Partial credit
 - » Worse to confuse musical sense of *bass* with a fish sense than with another musical sense
 - » Exact-sense match \rightarrow full credit
 - » Select the correct broad sense \rightarrow partial credit
 - » Scheme depends on the organization of senses being used

SENSEVAL-2 2001

- Three tasks
 - Lexical sample
 - All-words
 - Translation
- 12 languages
- Lexicon
 - SENSEVAL-1: from HECTOR corpus
 - SENSEVAL-2: from WordNet 1.7
- 93 systems from 34 teams

Lexical sample task

- Select a sample of words from the lexicon
- Systems must then tag instances of the sample words in short extracts of text
- SENSEVAL-1: 35 words
 - 700001 John Dos Passos wrote a poem that talked of `the <tag>bitter</> beat look, the scorn on the lip."
 - 700002 The beans almost double in size during roasting. Black beans are over roasted and will have a <tag>bitter</> flavour and insufficiently roasted beans are pale and give a colourless, tasteless drink.

Lexical sample task: SENSEVAL-1

Noun	S	Verbs		Adjectives		Indeterminates		
-n	N	-V	N	-a	N	-р	N	
accident	267	amaze	70	brilliant	229	band	302	
behaviour	279	bet	177	deaf	122	bitter	373	
bet	274	bother	209	floating	47	hurdle	323	
disability	160	bury	201	generous	227	sanction	431	
excess	186	calculate	217	giant	97	shake	356	
float	75	consume	186	modest	270			
giant	118	derive	216	slight	218			
•••	•••	•••	•••	•••	•••			
TOTAL	2756	TOTAL	2501	TOTAL	1406	TOTAL	1785	

All-words task

- Systems must tag almost all of the content words in a sample of running text
 - sense-tag all predicates, nouns that are heads of noun-phrase arguments to those predicates, and adjectives modifying those nouns
 - ~5,000 running words of text
 - -~2,000 sense-tagged words

Translation task

- SENSEVAL-2 task
- Only for Japanese
- word sense is defined according to translation distinction
 - if the head word is translated differently in the given expressional context, then it is treated as constituting a different sense
- word sense disambiguation involves selecting the appropriate English word/phrase/sentence equivalent for a Japanese word

SENSEVAL-2 results

Language	Task	No. of	No. of	IAA	Baseline	Best
		submissions	teams			system
Czech	AW	1	1	-	-	.94
Basque	LS	3	2	.75	.65	.76
Estonian	AW	2	2	.72	.85	.67
Italian	LS	2	2	-	-	.39
Korean	LS	2	2	-	.71	.74
Spanish	LS	12	5	.64	.48	.65
Swedish	LS	8	5	.95	-	.70
Japanese	LS	7	3	.86	.72	.78
Japanese	TL	9	8	.81	.37	.79
English	AW	21	12	.75	.57	.69
English	LS	26	15	.86	.51/.16	.64/.40

SENSEVAL-2 de-briefing

- Where next?
 - Supervised ML approaches worked best
 » Looking at the role of feature selection algorithms
 - Need a well-motivated sense inventory
 - » Inter-annotator agreement went down when moving to WordNet senses
 - Need to tie WSD to real applications
 - » The translation task was a good initial attempt

SENSEVAL-3 2004

- 14 core WSD tasks including
 - All words (Eng, Italian): 5000 word sample
 - Lexical sample (7 languages)
- Tasks for identifying semantic roles, for multilingual annotations, logical form, subcategorization frame acquisition

English lexcial sample task

- Data collected from the Web from Web users
- Guarantee at least two word senses per word
- 60 ambiguous nouns, adjectives, and verbs
- test data
 - $-\frac{1}{2}$ created by lexicographers
 - $-\frac{1}{2}$ from the web-based corpus
- Senses from WordNet 1.7.1 and Wordsmyth (verbs)
- Sense maps provided for fine-to-coarse sense mapping
- Filter out multi-word expressions from data sets

English lexical sample task

Class	Nr of	Avg senses	Avg senses
	words	(fine)	(coarse)
Nouns	20	5.8	4.35
Verbs	32	6.31	4.59
Adjectives	5	10.2	9.8
Total	57	6.47	4.96

Table 1: Summary of the sense inventory

Results

- 27 teams, 47 systems
- Most frequent sense baseline
 - 55.2% (fine-grained)
 - 64.5% (coarse)
- Most systems significantly above baseline
 - Including some unsupervised systems
- Best system
 - 72.9% (fine-grained)
 - 79.3% (coarse)

SENSEVAL-3 lexical sample results

		Fi	ne	Coarse	
System/Team	Description	Ρ	R	Р	R
htsa3	A Naive Bayes system, with correction of the a-priori frequencies, by				
U.Bucharest (Grozea)	dividing the output confidence of the senses by $frequency^{\alpha}$ ($\alpha = 0.2$)	72.9	72.9	79.3	79.3
IRST-Kernels	Kernel methods for pattern abstraction, paradigmatic and syntagmatic info.				
ITC-IRST (Strapparava)	and unsupervised term proximity (LSA) on BNC, in an SVM classifier.	72.6	72.6	79.5	79.5
nusels	A combination of knowledge sources (part-of-speech of neighbouring words,				
Nat.U. Singapore (Lee)	words in context, local collocations, syntactic relations), in an SVM classifier.	72.4	72.4	78.8	78.8
htsa4	Similar to htsa3, with different correction function of a-priori frequencies.	72.4	72.4	78.8	78.8
BCU_comb	An ensemble of decision lists, SVM, and vectorial similarity, improved				
Basque Country U.	with a variety of smoothing techniques. The features consist	72.3	72.3	78.9	78.9
(Agirre & Martinez)	of local collocations, syntactic dependencies, bag-of-words, domain features.				
htsal	Similar to htsa3, but with smaller number of features.	72.2	72.2	78.7	78.7
rlsc-comb	A regularized least-square classification (RLSC), using local and topical				
U.Bucharest (Popescu)	features, with a term weighting scheme.	72.2	72.2	78.4	78.4
htsa2	Similar to htsa4, but with smaller number of features.	72.1	72.1	78.6	78.6
BCU_english	Similar to BCU_comb, but with a vectorial space model learning.	72.0	72.0	79.1	79.1

SENSEVAL-3 results (unsupervised)

			Fine		Coarse	
System/Team	Description	Р	R	Р	R	
wsdiit IIT Bombay (Ramabaichnan et al.)	An unsupervised system using a Lesk-like similarity between context of ambiguous words, and dictionary definitions. Experiments are	66.1	65.7	73.9	74.1	
Cymfony	A Maximum Entropy model for unsupervised clustering, using neighboring	56.2				
(Niu)	are used to map context clusters to WordNet/Worsmyth senses.	26.3	26.3	00.4	66.4	
Prob0 Cambridge U. (Preiss)	A combination of two unsupervised modules, using basic part of speech and frequency information.	54.7	54.7	63.6	63.6	
chr04-ls CL Research (Litkowski)	An unsupervised system relying on definition properties (syntactic, semantic, subcategorization patterns, other lexical information), as given in a dictionary. Performance is generally a function of how well senses are distinguished.	45.0	45.0	55.5	55.5	
CIAOSENSO U. Genova (Buscaldi)	An unsupervised system that combines the conceptual density idea with the frequency of words to disambiguate; information about domains is also taken into account.	50.1	41.7	59.1	49.3	

CS474 Natural Language Processing

- Before...
 - Lexical semantic resources: WordNet
 - Word sense disambiguation
 - » Dictionary-based approaches
- Today
 - Word sense disambiguation
 - » Supervised machine learning methods
 - » Evaluation
 - » Weakly supervised (bootstrapping) methods

Weakly supervised approaches

- <u>Problem</u>: Supervised methods require a large sensetagged training set
- <u>Bootstrapping approaches</u>: Rely on a small number of labeled seed instances

Repeat:

- 1. train *classifier* on *L*
- 2. label *U* using *classifier*
- add g of classifier's best x to L

Generating initial seeds

- Hand label a small set of examples
 - Reasonable certainty that the seeds will be correct
 - Can choose prototypical examples
 - Reasonably easy to do

• One sense per co-occurrence constraint (Yarowsky 1995)

- Search for sentences containing words or phrases that are strongly associated with the target senses
 - » Select *fish* as a reliable indicator of *bass*₁
 - » Select *play* as a reliable indicator of *bass*₂
- Or derive the co-occurrence terms automatically from machine readable dictionary entries
- Or select seeds automatically using co-occurrence statistics (see Ch 6 of J&M)

One sense per co-occurrence

Klucevsek **plays** Giulietti or Titano piano accordions with the more flexible, more difficult free **bass** rather than the traditional Stradella **bass** with its preset chords designed mainly for accompaniment.

We need more good teachers – right now, there are only a half a dozen who can **play** the free **bass** with ease.

An electric guitar and **bass player** stand off to one side, not really part of the scene, just as a sort of nod to gringo expectations perhaps.

When the New Jersey Jazz Society, in a fund-raiser for the American Jazz Hall of Fame, honors this historic night next Saturday, Harry Goodman, Mr. Goodman's brother and **bass player** at the original concert, will be in the audience with other family members.

The researchers said the worms spend part of their life cycle in such **fish** as Pacific salmon and striped **bass** and Pacific rockfish or snapper.

Associates describe Mr. Whitacre as a quiet, disciplined and assertive manager whose favorite form of escape is **bass fishing**.

And it all started when **fish**ermen decided the striped **bass** in Lake Mead were too skinny.

Though still a far cry from the lake's record 52-pound **bass** of a decade ago, "you could fillet these **fish** again, and that made people very, very happy," Mr. Paulson says.

Saturday morning I arise at 8:30 and click on "America's best-known **fish**erman," giving advice on catching **bass** in cold weather from the seat of a bass boat in Louisiana.

Yarowsky's bootstrapping approach

 Relies on a one sense per discourse constraint: The sense of a target word is highly consistent within any given document

Evaluation on ~37,000 examples

Word	Senses	Accuracy	Applicability
plant	living/factory	99.8%	72.8%
tank	vehicle/container	99.6%	50.5%
poach	steal/boil	100.0%	44.4%
palm	tree/hand	99.8%	38.5%
axes	grid/tools	100.0%	35.5%
sake	benefit/drink	100.0%	33.7%
bass	fish/music	100.0%	58.8%
space	volume/outer	99.2%	67.7%
motion	legal/physical	99.9%	49.8%
crane	bird/machine	100.0%	49.1%
Average		99.8%	50.1%

Yarowsky's bootstrapping approach

To learn disambiguation rules for a polysemous word:

1. Build a classifier (e.g. decision list) by training a supervised learning algorithm with the labeled examples.

2. Apply the classifier to all the unlabeled examples. Find instances that are classified with probability > *threshold* and add them to the set of labeled examples.

3. *Optional:* Use the one-sense-per-discourse constraint to augment the new examples.

4. Repeat until the unlabelled data is stable.

96.5% accuracy on coarse binary sense assignment involving 12 words

CS474 Natural Language Processing

- Last classes
 - Lexical semantic resources: WordNet
 - Word sense disambiguation
 - » Dictionary-based approaches
 - » Supervised machine learning methods
 - Issues for WSD evaluation
 » SENSEVAL
- Today
 - Weakly supervised (bootstrapping) methods
 - Unsupervised methods