N-gram models

- Unsmoothed n-gram models (finish slides from last class)
- Smoothing
 - Add-one (Laplacian)
 - Good-Turing
 - Unknown words
 - Evaluating n-gram models
 - Combining estimators
 - (Deleted) interpolation
 - Backoff

Smoothing

- Need better estimators than MLE for rare events
- Approach
 - Somewhat decrease the probability of previously seen events, so that there is a little bit of probability mass left over for previously unseen events
 - » Smoothing
 - » Discounting methods

Add-one smoothing

- Add one to all of the counts before normalizing into probabilities
- MLE unigram probabilities

$$P(w_x) = \frac{count(w_x)}{N}$$

corpus length in word tokens

Smoothed unigram probabilities

$$P(w_x) = \frac{count(w_x) + 1}{N + V}$$
 vocab size (# word types)

Adjusted counts (unigrams)

$$c_i^* = (c_i + 1) \frac{N}{N + V}$$

Add-one smoothing: bigrams

[example on board]

Add-one smoothing: bigrams

MLE bigram probabilities

$$P(w_n \mid w_{n-1}) = \frac{count(w_{n-1}w_n)}{count(w_{n-1})}$$

Laplacian bigram probabilities

$$P(w_n \mid w_{n-1}) = \frac{count(w_{n-1}w_n) + 1}{count(w_{n-1}) + V}$$

Add-one bigram counts

Original counts

	I	want	to	eat	Chinese	food	lunch
I	8	1087	0	13	0	0	0
want	3	0	786	0	6	8	6
to	3	0	10	860	3	0	12
eat	0	0	2	0	19	2	52
Chinese	2	0	0	0	0	120	1
food	19	0	17	0	0	0	0
lunch	4	0	0	0	0	1	0

New counts

	I	want	to	eat	Chinese	food	lunch
Ι	9	1088	1	14	1	1	1
want	4	1	787	1	7	9	7
to	4	1	11	861	4	1	13
eat	1	1	3	1	20	3	53
Chinese	3	1	1	1	1	121	2
food	20	1	18	1	1	1	1
lunch	5	1	1	1	1	2	1

Add-one smoothed bigram probabilites

Original

	I	want	to	eat	Chinese	food	lunch
I	.0023	.32	0	.0038	0	0	0
want	.0025	0	.65	0	.0049	.0066	.0049
to	.00092	0	.0031	.26	.00092	0	.0037
eat	0	0	.0021	0	.020	.0021	.055
Chinese	.0094	0	0	0	0	.56	.0047
food	.013	0	.011	0	0	0	0
lunch	.0087	0	0	0	0	.0022	0

Add-one smoothing

	I	want	to	eat	Chinese	food	lunch
I	.0018	.22	.00020	.0028	.00020	.00020	.00020
want	.0014	.00035	.28	.00035	.0025	.0032	.0025
to	.00082	.00021	.0023	.18	.00082	.00021	.0027
eat	.00039	.00039	.0012	.00039	.0078	.0012	.021
Chinese	.0016	.00055	.00055	.00055	.00055	.066	.0011
food	.0064	.00032	.0058	.00032	.00032	.00032	.00032
lunch	.0024	.00048	.00048	.00048	.00048	.00096	.00048

Too much probability mass is moved!