N-gram models

= Unsmoothed n-gram models (finish slides from last class)
=) Smoothing
— Add-one (Laplacian)
— Good-Turing
= Unknown words
= Evaluating n-gram models
= Combining estimators
— (Deleted) interpolation
— Backoff



Smoothing

= Need better estimators than MLE for rare
events

= Approach

— Somewhat decrease the probability of
previously seen events, so that there is a little
bit of probability mass left over for previously
unseen events

» Smoothing
» Discounting methods



Add-one smoothing

= Add one to all of the counts before normalizing
iInto probabilities

= MLE unigram probabilities

corpus length

Pw) = count(w, ) In word tokens
. N
= Smoothed unigram probabilities
count(w_) +1 vocab size
P(w, )= :
(w,) NV (# word types)
= Adjusted counts (unigrams)
: N
¢, = (Ci + 1)

N+V



Add-one smoothing: bigrams

[example on board]



Add-one smoothing: bigrams

= MLE bigram probabilities

count(w,_w )

Pw lw )=
1 count(w, )

= Laplacian bigram probabilities

P(w lw )= count(w,_w )+1

count(w,_ )+V



Add-one bigram counts

" I v 0 e _hinese ood C
n Orlglnal | I, [ w ".]-l| o | :l | Chinese| food| lunch
| 8 1087 0 13 0 0 0
wanlt 3 0 786 0 6 8 6
counts oo | ] sel s O
cal 0 0 2 0 19 2 52
Chinese 2 0 0 0 ] 120 |
food o o 17 0 0 0 0
lunch 4 0 0 0 0 | 0
= New counts
I want to eat Chinese food lunch
I 9 1088 1 14 1 1 1
want 4 1 787 1 7 9 7
to 4 1 11 861 4 1 13
eat 1 1 3 1 20 3 53
Chinese 3 | | 1 1 121 2
food 20 1 18 1 1 1 1
lunch 5 1 1 1 1 2 |




Add-one smoothed bigram probabilites

= Original

I want| to eat Chinese| food lunch
I .0023 32 0 .0038] 0 0 0
want .0025 0 .65 0 .0049 .0066| .0049
to 000921 O .0031] .26 .00092 0 .0037
eat 0 0 .00211 O .020 0021 .055
Chinese| .0094 0 0 0 0 .56 .0047
food .013 0 011 0 0 0 0
lunch .0087 0 0 0 0 00221 0O

= Add-one smoothing

I want to eat Chinese| food lunch
I 0018 | .22 .00020( .0028 | .00020 | .00020| .00020
want .0014 | .00035] .28 .00035[ .0025 .0032 | .0025
to .00082| .00021| .0023 | .18 .00082 | .00021| .0027
eat .00039| .00039| .0012 | .00039| .0078 .0012 | .021
Chinese || .0016 | .00055| .00055| .00055| .00055 | .066 0011
food .0064 | .00032] .0058 | .00032| .00032 | .00032| .00032
lunch 0024 | .00048] .00048| .00048] .00048 | .00096| .00048




Too much probability mass is moved!




Too much probability mass is moved

Estimated bigram
frequencies

AP data, 44 million words
— Church and Gale (1991)

In general, add-one
smoothing is a poor method
of smoothing

Often much worse than
other methods in predicting
the actual probability for
unseen bigrams

r=fuwe |femp fadd-1

0 0.000027 | 0.000137
1 0.448 0.000274
2 1.25 0.000411
3 2.24 0.000548
4 3.23 0.000685
5 4.21 0.000822
6 5.23 0.000959
7 6.21 0.00109
8 7.21 0.00123
9 8.26 0.00137




Methodology: Options

= Divide data into training set and test set

— Train the statistical parameters on the training set; use them to
compute probabilities on the test set

— Test set: 5%-20% of the total data, but large enough for reliable
results

= Divide training into training and validation set

» Validation set might be ~10% of original training set
» Obtain counts from training set
» Tune smoothing parameters on the validation set

= Divide test set into development and final test set

— Do all algorithm development by testing on the dev set
— Save the final test set for the very end...use for reported results

Don’t train on the test corpus!! Report results on the test
data not the training data.



Good-Turing discounting

Re-estimates the amount of probability mass to
assign to N-grams with zero or low counts by
looking at the number of N-grams with higher
counts.

Let N. be the number of N-grams that occur ¢
times.

— For bigrams, N, is the number of bigrams of count O,
N, is the number of bigrams with count 1, etc.

Revised counts: N
* c+l1
c =(c+])
N

c




Good-Turing discounting results

Works very well in
practice

Usually, the GT
discounted estimate
c* is used only for
unreliable counts
(e.g.<9H)

As with other
discounting
methods, it is the
norm to treat N-
grams with low
counts (e.g. counts
of 1) as if the count
was 0

r=fuwe |femp Faga-1 for

0 0.000027 | 0.000137 |0.000027
1 0.448 0.000274 | 0.446
2 1.25 0.000411 1.26
3 2.24 0.000548 |2.24
4 3.23 0.000685 |3.24
3 4.21 0.000822 4.22
6 5.23 0.000959 |5.19
7 6.21 0.00109 6.21
8 7.21 0.00123 7.24
9 8.26 0.00137 8.25




N-gram models

= Unsmoothed n-gram models (review)
= Smoothing
— Add-one (Laplacian)
— Good-Turing
=)= Unknown words
= Evaluating n-gram models
= Combining estimators
— (Deleted) interpolation
— Backofft



Unknown words

= Closed vocabulary
— Vocabulary is known in advance
— Test set will contain only these words

= Open vocabulary
— Unknown, out of vocabulary words can occur
— Add a pseudo-word <UNK>

= Training the unknown word model???



Evaluating n-gram models

= Best way: extrinsic evaluation

— Embed in an application and measure the total
performance of the application

— End-to-end evaluation

= Intrinsic evaluation
— Measure quality of the model independent of any
application
— Perplexity

» Intuition: the better model is the one that has a tighter fit to the
test data or that better predicts the test data



Perplexity

Foratestset W =w, w, ... wy

PP (W) =P (w;w, ... wy) "N

_ J 1
Pww,..w,)

The higher the (estimated) probability of the word
sequence, the lower the perplexity.

Must be computed with models that have no
knowledge of the test set.



N-gram models

= Unsmoothed n-gram models (review)
= Smoothing
— Add-one (Laplacian)
— Good-Turing
Unknown words
= Evaluating n-gram models

mm)p= Combining estimators

— (Deleted) interpolation

— Backofft



Combining estimators

= Smoothing methods
— Provide the same estimate for all unseen (or rare) n-grams with
the same prefix
— Make use only of the raw frequency of an n-gram

= But there is an additional source of knowledge we can
draw on --- the n-gram “hierarchy”

— If there are no examples of a particular trigram,w,_,w,__,w,, to
compute P(w, |w,_,w, ), we can estimate its probability by using
the bigram probability P(w,|w,_,).

— If there are no examples of the bigram to compute P(w, |w,_,), we
can use the unigram probability P(w,).

= For n-gram models, suitably combining various models of

different orders is the secret to success.



Simple linear interpolation

= Construct a linear combination of the multiple
probability estimates.

— Weight each contribution so that the result is
another probability function.

Pw, |w,,w,) = APW, |w,,w, )+ ALP(w, [w,)+ A P(w,)

— Lambda’ s sum to 1.
= Also known as (finite) mixture models

= Deleted interpolation

— Each lambda is a function of the most discriminating
context



Backoff (Katz 1987)

= Non-linear method

= The estimate for an n-gram is allowed to back off through
progressively shorter histories.

= The most detailed model that can provide sufficiently
reliable information about the current context is used.

= Trigram version (high-level):

( Pw |w_w_), if Clw_,w_w)>0

o, Pw, |w,_), if C(w_,w_w)=0
and C(w,_w,)>0

o, P(w,), otherwise.

f)(Wi [ w_,w,_) = {




Final words...

= Problems with backoff?

— Probability estimates can change suddenly on adding
more data when the back-off algorithm selects a
different order of n-gram model on which to base the
estimate.

— Works well in practice in combination with
smoothing.
= (Good option: simple linear interpolation with MLE
n-gram estimates plus some allowance for
unseen words (e.g. Good-Turing discounting)



