
Today: Probabilistic Parsing

Goal: Find the most likely parse.

1. Parsing with PCFGs

2. Problems

3. Probabilistic lexicalized CFGs

Slide CS474–1

CFG’s

A context free grammar consists of:

1. a set of non-terminal symbols N

2. a set of terminal symbols Σ (disjoint from N)

3. a set of productions, P, each of the form A → α, where A is a

non-terminal and α is a string of symbols from the infinite set of

strings (Σ ∪ N)

4. a designated start symbol S

Slide CS474–2

Probabilistic CFGs

Augments each rule in P with a conditional probability:

A → β [p]

where p is the probability that the non-terminal A will be expanded to

the sequence β. Often referred to as

P (A → β) or

P (A → β|A).

Slide CS474–3

Example

S � NP VP

��
� 80

�

Det � that

��
� 05

��

the

�
� 80

� �

a
��
� 15

�

S � Aux NP VP

��
� 15

�

Noun � book
�
� 10

�

S � VP

��
� 05

�

Noun � flights

�
� 50

�

NP � Det Nom

��
� 20

�

Noun � meal

�
� 40

�

NP � Proper-Noun

�
� 35

�

Verb � book

��
� 30

�

NP � Nom

��
� 05

�

Verb � include

�
� 30

�

NP � Pronoun

��
� 40

�

Verb � want

�
� 40

�

Nom � Noun

��
� 75

�

Aux � can

��
� 40

�

Nom � Noun Nom

��
� 20

�

Aux � does

�
� 30

�

Nom � Proper-Noun Nom

�
� 05

�

Aux � do

��
� 30

�

VP � Verb

��
� 55

�

Proper-Noun � TWA

��
� 40

�

VP � Verb NP

�
� 40

�
Proper-Noun � Denver

��
� 40

�

VP � Verb NP NP
�
� 05

�
Pronoun � you

�
� 40

� �

I

��
� 60

�

Slide CS474–4

cardie
Typewritten Text

cardie
Typewritten Text

cardie
Typewritten Text

cardie
Typewritten Text

cardie
Typewritten Text
.60

cardie
Typewritten Text

cardie
Typewritten Text

cardie
Typewritten Text

cardie
Highlight

Why are PCFGs useful?

• Assigns a probability to each parse tree T

• Useful in disambiguation

– Choose the most likely parse

– Computing the probability of a parse

If we make independence assumptions, P(T) =
∏

n∈T
p(r(n)).

• Useful in language modeling tasks

Slide CS474–5

Example

(a) S (b) S

Aux NP VP Aux NP VP

V NP NP V NP

Nom

Nom Nom

Pro PNoun Noun Pro PNoun Noun

can you book TWA flights can you book TWA flights

Rules P Rules P
S � Aux NP VP .15 S � Aux NP VP .15
NP � Pro .40 NP � Pro .40
VP � V NP NP .05 VP � V NP .40
NP � Nom .05 NP � Nom .05
NP � PNoun .35 Nom � PNoun Nom .05
Nom � Noun .75 Nom � Noun .75
Aux � Can .40 Aux � Can .40
NP � Pro .40 NP � Pro .40
Pro � you .40 Pro � you .40
Verb � book .30 Verb � book .30
PNoun � TWA .40 Pnoun � TWA .40
Noun � flights .50 Noun � flights .50

Slide CS474–6

Where does the grammar come from?

1. developed manually

2. from a treebank

Slide CS474–7

6	

Treebanks
•  Corpus with sentence - parse tree (presumably the right

one) pairs.
•  Penn TreeBank is

a widely used
treebank.

§ Most well known is the Wall
Street Journal section of the
Penn TreeBank.

§ 1 M words from the
1987-1989 Wall Street
Journal.

7	

Treebanks
•  How are they created?

–  Parse the collection with an automatic parser
–  Manually correct each parse as necessary.

•  Requires detailed annotation guidelines that provide
–  a POS tagset
–  a grammar
–  instructions for how to deal with particular grammatical

constructions.

4/16/14	 	 Speech	 and	 Language	 Processing	 -‐	 Jurafsky	
and	 Mar5n	 	 	 	 	 	 	 	 8	

Treebank Grammars

•  Treebanks implicitly define a grammar.
•  Simply take the local rules that make up the sub-

trees in all the trees in the collection and you
have a grammar.

•  Not complete, but if you have decent size
corpus, you’ll have a grammar with decent
coverage.

4/16/14	 	 Speech	 and	 Language	 Processing	 -‐	 Jurafsky	
and	 Mar5n	 	 	 	 	 	 	 	 9	

Treebank Grammars

•  Tend to be very flat due to the fact that they tend
to avoid recursion.
–  To ease the annotators burden

•  For example, the Penn Treebank has 4500
different rules for VPs. Among them...

Where do the probabilities come from?

1. from a treebank:

P (α → β|α) = Count(α → β)/Count(α)

2. use EM (forward-backward algorithm, inside-outside algorithm)

Slide CS474–8

Parsing with PCFGs

Produce the most likely parse for a given sentence:

T̂ (S) = argmaxT∈τ(S)P (T)

where τ(S) is the set of possible parse trees for S.

• Augment the Earley algorithm to compute the probability of each

of its parses.

When adding an entry E of category C to the chart using rule i

with n subconstituents, E1, . . . , En:

P (E) = P (rule i | C) ∗ P (E1) ∗ . . . ∗ P (En)

• probabilistic CKY (Cocke-Kasami-Younger) algorithm

Slide CS474–9

Problems with PCFGs

Do not model structural dependencies.

Often the choice of how a non-terminal expands depends on the

location of the node in the parse tree.

E.g. Strong tendency in English for the syntactic subject of a spoken

sentence to be a pronoun.

• 91% of declarative sentences in the Switchboard corpus are

pronouns (vs. lexical).

• In contrast, 34% of direct objects in Switchboard are pronouns.

Slide CS474–10

Problems with PCFGs

Do not adequately model lexical dependencies.

Moscow sent more than 100,000 soldiers into Afghanistan...

PP can attach to either the NP or the VP:

NP → NP PP or VP → V NP PP?

Attachment choice depends (in part) on the verb: send subcategorizes

for a destination (e.g. expressed via a PP that begins with into or to or

...).

Slide CS474–11

Probabilistic lexicalized CFGs

• Each non-terminal is associated with its head.

• Each PCFG rule needs to be augmented to identify one rhs

constituent to be the head daughter.

• Headword for a node in the parse tree is set to the headword of its

head daughter.

Slide CS474–12

Example

S(dumped)

NP(workers) VP(dumped)

NNS(workers) VBD(dumped) NP(sacks) PP(into)

NNS(sacks) P(into) NP(bin)

DT(a) NN(bin)

workers dumped sacks into a bin

Slide CS474–13

4/16/14	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Speech	 and	
Language	 Processing	 -‐	 Jurafsky	 and	 Mar<n	 	 	 	 	 	 	 	 12	

Noun Phrases

Probabilistic lexicalized CFGs

View a lexicalized (P)CFG as a simple (P)CFG with a lot more rules.

VP(dumped) → VBD(dumped) NP(sacks) PP(into) [3x10−10]

VP(dumped) → VBD(dumped) NP(cats) PP(into) [8x10−10]

VP(dumped) → VBD(dumped) NP(sacks) PP(above) [1x10−12]

...

Problem?

Slide CS474–14

Evaluation Measures and State of the Art

• labeled recall: # correct constituents in candidate parse of s / #

correct constituents in treebank parse of s

• labeled precision: # correct constituents in candidate parse of s /

total # of constituents in candidate parse of s

• crossing brackets: the number of crossed brackets

State of the art: 90% recall, 90% precision, 1% crossed bracketed

constituents per sentence (WSJ treebank)

Slide CS474–18

