
Today: Probabilistic Parsing

Goal: Find the most likely parse.

1. Parsing with PCFGs

2. Problems

3. Probabilistic lexicalized CFGs
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CFG’s

A context free grammar consists of:

1. a set of non-terminal symbols N

2. a set of terminal symbols Σ (disjoint from N)

3. a set of productions, P, each of the form A → α, where A is a

non-terminal and α is a string of symbols from the infinite set of

strings (Σ ∪ N)

4. a designated start symbol S
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Probabilistic CFGs

Augments each rule in P with a conditional probability:

A → β [p]

where p is the probability that the non-terminal A will be expanded to

the sequence β. Often referred to as

P (A → β) or

P (A → β|A).
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Example

S � NP VP

��
� 80

�

Det � that

��
� 05

��

the

�
� 80

� �

a
��
� 15

�

S � Aux NP VP

��
� 15

�

Noun � book
�
� 10

�

S � VP

��
� 05

�

Noun � flights

�
� 50

�

NP � Det Nom

��
� 20

�

Noun � meal

�
� 40

�

NP � Proper-Noun

�
� 35

�

Verb � book

��
� 30

�

NP � Nom

��
� 05

�

Verb � include

�
� 30

�

NP � Pronoun

��
� 40

�

Verb � want

�
� 40

�

Nom � Noun

��
� 75

�

Aux � can

��
� 40

�

Nom � Noun Nom

��
� 20

�

Aux � does

�
� 30

�

Nom � Proper-Noun Nom

�
� 05

�

Aux � do

��
� 30

�

VP � Verb

��
� 55

�

Proper-Noun � TWA

��
� 40

�

VP � Verb NP

�
� 40

�
Proper-Noun � Denver

��
� 40

�

VP � Verb NP NP
�
� 05

�
Pronoun � you

�
� 40

� �

I

��
� 60

�
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Why are PCFGs useful?

• Assigns a probability to each parse tree T

• Useful in disambiguation

– Choose the most likely parse

– Computing the probability of a parse

If we make independence assumptions, P(T) =
∏

n∈T
p(r(n)).

• Useful in language modeling tasks
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Example

(a) S (b) S

Aux NP VP Aux NP VP

V NP NP V NP

Nom

Nom Nom

Pro PNoun Noun Pro PNoun Noun

can you book TWA flights can you book TWA flights

Rules P Rules P
S � Aux NP VP .15 S � Aux NP VP .15
NP � Pro .40 NP � Pro .40
VP � V NP NP .05 VP � V NP .40
NP � Nom .05 NP � Nom .05
NP � PNoun .35 Nom � PNoun Nom .05
Nom � Noun .75 Nom � Noun .75
Aux � Can .40 Aux � Can .40
NP � Pro .40 NP � Pro .40
Pro � you .40 Pro � you .40
Verb � book .30 Verb � book .30
PNoun � TWA .40 Pnoun � TWA .40
Noun � flights .50 Noun � flights .50
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Where does the grammar come from?

1. developed manually

2. from a treebank
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6	  

Treebanks 
•  Corpus with sentence - parse tree (presumably the right 

one) pairs. 
•  Penn TreeBank is                                                              

a widely used                                                           
treebank. 

 
 
§ Most well known is the Wall 
Street Journal section of the 
Penn TreeBank. 

§ 1 M words from the 
1987-1989 Wall Street 
Journal. 
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Treebanks 
•  How are they created?  

–  Parse the collection with an automatic parser 
–  Manually correct each parse as necessary. 

•  Requires detailed annotation guidelines that provide  
–  a POS tagset 
–  a grammar  
–  instructions for how to deal with particular grammatical 

constructions. 
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Treebank Grammars 

•  Treebanks implicitly define a grammar. 
•  Simply take the local rules that make up the sub-

trees in all the trees in the collection and you 
have a grammar. 

•  Not complete, but if you have decent size 
corpus, you’ll have a grammar with decent 
coverage. 



4/16/14	   	  Speech	  and	  Language	  Processing	  -‐	  Jurafsky	  
and	  Mar5n	  	  	  	  	  	  	  	   9	  

Treebank Grammars 

•  Tend to be very flat due to the fact that they tend 
to avoid recursion. 
–  To ease the annotators burden 

•  For example, the Penn Treebank has 4500 
different rules for VPs. Among them... 

 



Where do the probabilities come from?

1. from a treebank:

P (α → β|α) = Count(α → β)/Count(α)

2. use EM (forward-backward algorithm, inside-outside algorithm)
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Parsing with PCFGs

Produce the most likely parse for a given sentence:

T̂ (S) = argmaxT∈τ(S)P (T )

where τ(S) is the set of possible parse trees for S.

• Augment the Earley algorithm to compute the probability of each

of its parses.

When adding an entry E of category C to the chart using rule i

with n subconstituents, E1, . . . , En:

P (E) = P (rule i | C) ∗ P (E1) ∗ . . . ∗ P (En)

• probabilistic CKY (Cocke-Kasami-Younger) algorithm

Slide CS474–9



Problems with PCFGs

Do not model structural dependencies.

Often the choice of how a non-terminal expands depends on the

location of the node in the parse tree.

E.g. Strong tendency in English for the syntactic subject of a spoken

sentence to be a pronoun.

• 91% of declarative sentences in the Switchboard corpus are

pronouns (vs. lexical).

• In contrast, 34% of direct objects in Switchboard are pronouns.
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Problems with PCFGs

Do not adequately model lexical dependencies.

Moscow sent more than 100,000 soldiers into Afghanistan...

PP can attach to either the NP or the VP:

NP → NP PP or VP → V NP PP?

Attachment choice depends (in part) on the verb: send subcategorizes

for a destination (e.g. expressed via a PP that begins with into or to or

...).
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Probabilistic lexicalized CFGs

• Each non-terminal is associated with its head.

• Each PCFG rule needs to be augmented to identify one rhs

constituent to be the head daughter.

• Headword for a node in the parse tree is set to the headword of its

head daughter.
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Example

S(dumped)

NP(workers) VP(dumped)

NNS(workers) VBD(dumped) NP(sacks) PP(into)

NNS(sacks) P(into) NP(bin)

DT(a) NN(bin)

workers dumped sacks into a bin
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Noun Phrases 



Probabilistic lexicalized CFGs

View a lexicalized (P)CFG as a simple (P)CFG with a lot more rules.

VP(dumped) → VBD(dumped) NP(sacks) PP(into) [3x10−10]

VP(dumped) → VBD(dumped) NP(cats) PP(into) [8x10−10]

VP(dumped) → VBD(dumped) NP(sacks) PP(above) [1x10−12]

...

Problem?
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Evaluation Measures and State of the Art

• labeled recall: # correct constituents in candidate parse of s / #

correct constituents in treebank parse of s

• labeled precision: # correct constituents in candidate parse of s /

total # of constituents in candidate parse of s

• crossing brackets: the number of crossed brackets

State of the art: 90% recall, 90% precision, 1% crossed bracketed

constituents per sentence (WSJ treebank)
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