Today: Probabilistic Parsing
Goal: Find the most likely parse.

1. Parsing with PCFGs
2. Problems
3. Probabilistic lexicalized CFGs

CFG's

A context free grammar consists of:

1. a set of non-terminal symbols N
2. a set of terminal symbols Σ (disjoint from N)
3. a set of productions, P, each of the form $A \rightarrow \alpha$, where A is a non-terminal and α is a string of symbols from the infinite set of strings $(\Sigma \cup N)$
4. a designated start symbol S

Probabilistic CFGs

Augments each rule in P with a conditional probability:
$A \rightarrow \beta[p]$
where p is the probability that the non-terminal A will be expanded to the sequence β. Often referred to as
$P(A \rightarrow \beta)$ or
$P(A \rightarrow \beta \mid A)$.

Example

Slide CS474-4

Why are PCFGs useful?

- Assigns a probability to each parse tree T
- Useful in disambiguation
- Choose the most likely parse
- Computing the probability of a parse

If we make independence assumptions, $\mathrm{P}(\mathrm{T})=\prod_{n \in T} \mathrm{p}(\mathrm{r}(\mathrm{n}))$.

- Useful in language modeling tasks

Example

Slide CS474-6

