

Machine Learning for Noun Phrase Coreference

Claire Cardie Department of Computer Science Cornell University

Last Class

noun phrase coreference resolution

- what it is
- why it's important
- why it's hard
- a (supervised) machine learning approach
- weakly supervised approaches
- 1. Illustrate how much you've learned
- 2. Realities of doing research in NLP+ML
- 3. Introduce some cool weakly supervised learning methods

Identify all noun phrases that refer to the same entity

Queen Elizabeth set about transforming her husband,

King George VI, into a viable monarch. Logue,

a renowned speech therapist, was summoned to help

Identify all noun phrases that refer to the same entity

Queen Elizabeth set about transforming **her** husband, King George VI, into a viable monarch. Logue, a renowned speech therapist, was summoned to help

Identify all noun phrases that refer to the same entity

Queen Elizabeth set about transforming her husband,

King George VI, into a viable monarch. Logue,

a renowned speech therapist, was summoned to help

Identify all noun phrases that refer to the same entity

Queen Elizabeth set about transforming her husband,

King George VI, into a viable monarch. Logue,

a renowned speech therapist, was summoned to help

Identify all noun phrases that refer to the same entity

Queen Elizabeth set about transforming her husband,

King George VI, into a viable monarch. Logue,

a renowned speech therapist, was summoned to help

Identify all noun phrases that refer to the same entity

Queen Elizabeth set about transforming her husband,

King George VI, into a viable monarch. Logue,

a renowned speech therapist, was summoned to help

Why It's Hard

Many sources of information play a role

- string matching
- syntactic constraints
- number agreement
- gender agreement
- discourse focus
- recency
- syntactic parallelism
- semantic class
- world knowledge ...

Why It's Hard

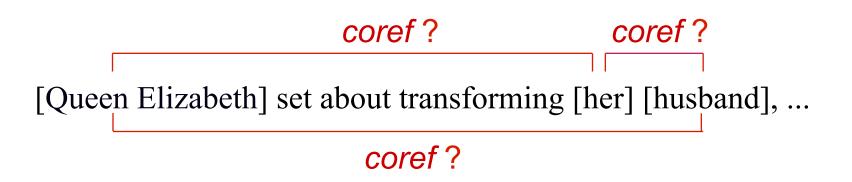
- No single source is a completely reliable indicator
- Identifying each of these features automatically, accurately, and in context, is hard

Last Class

- noun phrase coreference resolution
- a (supervised) machine learning approach
 - evaluation
 - problems...some solutions
 - weakly supervised approaches

Knowledge-based approaches are still common. E.g.

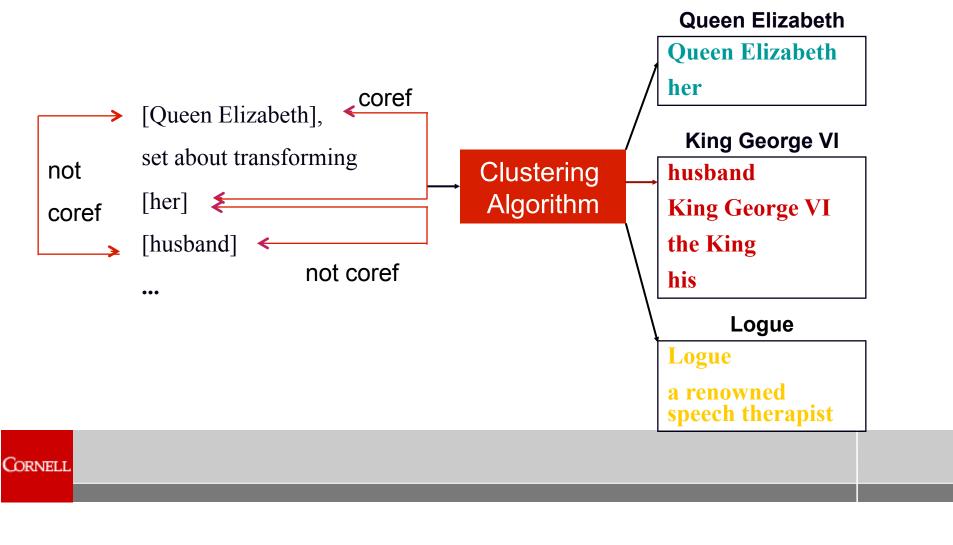
- Lappin & Leass [1994]
- CogNIAC [Baldwin, 1996]



A Machine Learning Approach

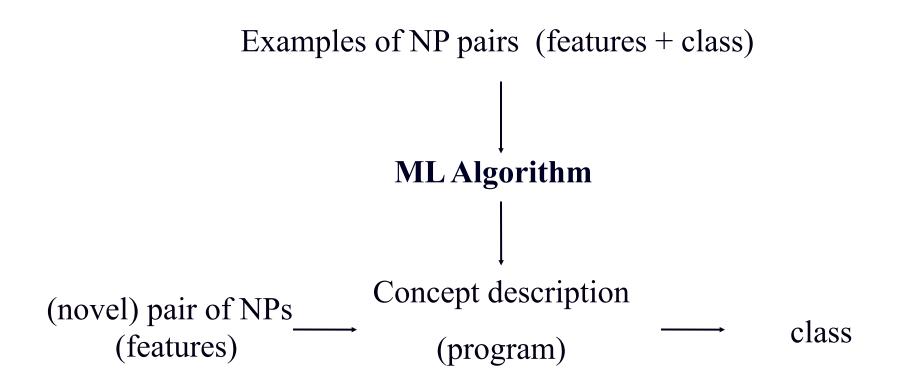
Classification

CORNELL


 given a description of two noun phrases, NP_i and NP_j, classify the pair as coreferent or not coreferent

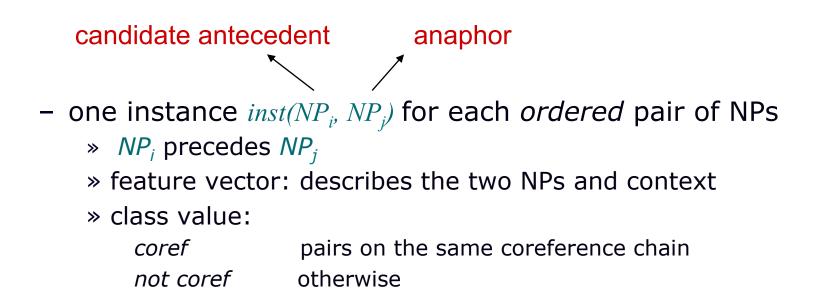
Aone & Bennett [1995]; Connolly et al. [1994]; McCarthy & Lehnert [1995]; Soon et al. [2001]; Ng & Cardie [2002]; ...

A Machine Learning Approach


- Clustering
 - coordinates pairwise coreference decisions

Machine Learning Issues

- Training data creation
- Instance representation
- Learning algorithm
- Clustering algorithm


Supervised Inductive Learning

Training Data Creation

- Creating training instances
 - texts annotated with coreference information

Instance Representation

- 25 features per instance
 - lexical (3)
 - » string matching for pronouns, proper names, common nouns
 - grammatical (18)
 - » pronoun_1, pronoun_2, demonstrative_2, indefinite_2, ...
 - » number, gender, animacy
 - » appositive, predicate nominative
 - » binding constraints, simple contra-indexing constraints, ...
 - » span, maximalnp, ...
 - semantic (2)
 - » same WordNet class
 - » alias
 - positional (1)
 - » distance between the NPs in terms of # of sentences
 - knowledge-based (1)
 - » naïve pronoun resolution algorithm

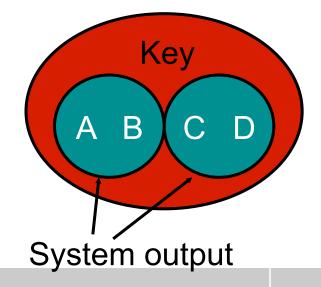
Learning Algorithm

- RIPPER (Cohen, 1995)
 C4.5 (Quinlan, 1994)
 - rule learners

» input: set of training instances

- » output: coreference classifier
- Learned classifier
 - » input: test instance (represents pair of NPs)
 » output: classification confidence of classification

Lie #1: Clustering Algorithm


- Best-first single-link clustering
 - Mark each NP_j as belonging to its own class: $NP_j \in c_j$
 - Proceed through the NPs in left-to-right order.
 - » For each NP, *NP_j*, create test instances, *inst(NP_i, NP_j*), for all of its preceding NPs, *NP_i*.
 - » Select as the antecedent for NP_j the highest-confidence coreferent NP, NP_i , according to the coreference classifier (or none if all have below .5 confidence); Merge c_i and c_i .

Plan for the Talk

- noun phrase coreference resolution
- a (supervised) machine learning approach
 - evaluation
 - problems...some solutions
- weakly supervised approaches

Evaluation

- MUC-6 and MUC-7 coreference data sets
- documents annotated w.r.t. coreference
- 30 + 30 training texts (dry run)
- 30 + 20 test texts (formal evaluation)
- scoring program
 - recall
 - precision
 - F-measure: 2PR/(P+R)

Baseline Results

	MUC-6			MUC-7		
	R	Р	F	R	Р	F
Baseline	40.7	73.5	52.4	27.2	86.3	41.3
Worst MUC System	36	44	40	52.5	21.4	30.4
Best MUC System	59	72	65	56.1	68.8	61.8

```
ALIAS = C: +
       ALIAS = I:
         SOON STR NONPRO = C:
           ANIMACY = NA:
           ANIMACY = I: -
           ANIMACY = C: +
         SOON STR NONPRO = I:
           PRO STR = C: +
           PRO STR = I:
             PRO RESOLVE = C:
               EMBEDDED 1 = Y: -
               EMBEDDED 1 = N:
                 PRONOUN 1 = Y:
                   ANIMACY = NA: -
                   ANIMACY = I: -
                   ANIMACY = C: +
                 PRONOUN 1 = N:
                   MAXIMALNP = C: +
                   MAXIMALNP = I:
                     WNCLASS = NA: -
                     WNCLASS = I: +
                     WNCLASS = C: +
             PRO RESOLVE = I:
               APPOSITIVE = I: -
               APPOSITIVE = C:
                 GENDER = NA: +
                 GENDER = I: +
CORNELL
                 GENDER = C: -
```

Classifier for MUC-6 Data Set