CS474 Natural Language Processing

- Last class
 - Introduction to the field of NLP
 - Course requirements, syllabus, etc.
- Today
 - Introduction to an important class of statistical methods in NLP: generative models

CS474 Natural Language Processing

Language Modeling

- Introduction to generative models of language
 - ✓ >> What are they?

today - why they' re important Issues for counting words

- » Statistics of natural language
- » Unsmoothed n-gram models

What are *generative* models of language?

- Word prediction
 - Once upon a…
 - I'd like to make a collect...
 - Let's go outside and take a...
- Generative models can assign probabilities to
 - Possible next words
 - Sequences of words

Why are word prediction models important?

- Augmentative communication systems
 - For the disabled, to predict the next words the user wants to "speak"
- Computer-aided education
 - System that helps kids learn to read (e.g. Mostow et al. system)
- Speech recognition
- Context-sensitive spelling correction

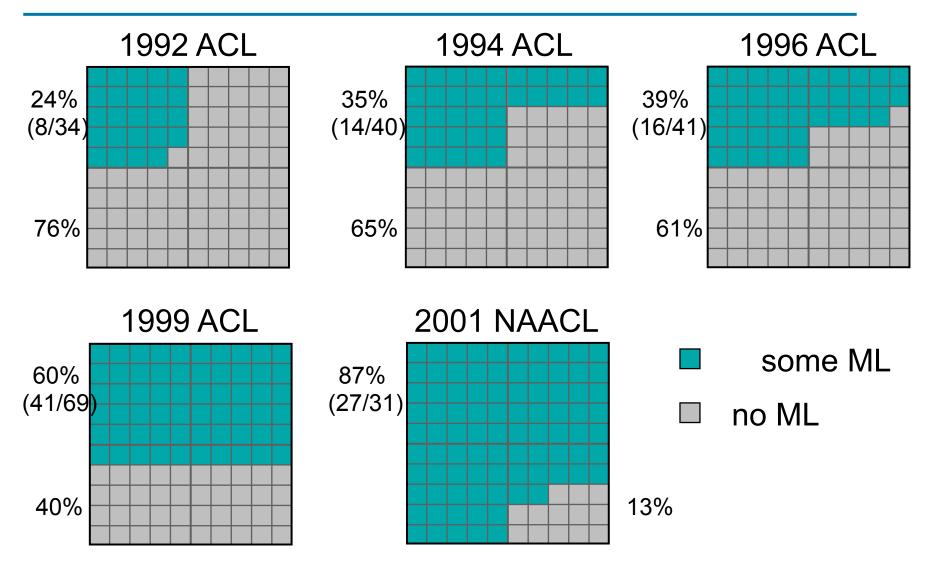
• • • •

Why are word prediction models important?

- Can be used to assign a probability to the next word in an incomplete sentence
- Closely related to the problem of computing the probability of a sequence of words
 - Useful for part-of-speech tagging, probabilistic parsing, …

The need for models of word prediction in NLP has not been uncontroversial

But it must be recognized that the notion "probability of a sentence" is an entirely useless one, under any known interpretation of this term. -Noam Chomsky (1969)


Every time I fire a linguist the recognition rate improves.

- Fred Jelinek (IBM speech group, 1988)

Paradigms in NLP

- Knowledge-based methods
 - Rely on the manual encoding of linguistic (and world) knowledge
 - » E.g. FSA's for morphological parsing, syntactic parsing
- Statistical/learning methods
 - Rely on the automatic acquisition of linguistic knowledge from corpora

Statistical/machine learning in NLP

Word prediction models

- Important in real-life situations...
 - Miss words in a conversation, lecture, movie, etc.

Word prediction gone awry

Woody Allen's "Take the Money and Run"

http://www.tcm.com/mediaroom/video/224555/Take-the-Money-and-Run-Movie-Clip-Gub.html

Word prediction gone amok

Seinfeld Sentence Finisher

<u>http://www.youtube.com/watch?</u> v=01teZKTYjQA&feature=related

N-gram model

- Uses the previous N-1 words to predict the next word
 - 2-gram: bigram
 - 3-gram: trigram
 - 1-gram: unigram
- In speech recognition, these statistical models of word sequences are referred to as a language model

Want to use n-gram models to...

- Determine the next word in a sequence
 - Probability distribution across all words in the language

$$- P(w_n | w_1 | w_2 ... | w_{n-1})$$

 Determine the probability of a sequence of words

$$- P (w_1 w_2 \dots w_{n-1} w_n)$$

Next...Language Modeling

- Introduction to generative models of language
 - » What are they?
 - » Why they' re important
 - » Issues for counting words
 - » Statistics of natural language
 - » Unsmoothed n-gram models

Counting words in corpora

- Ok, so how many words are in this sentence?
- Depends on whether or not we treat punctuation marks as words
 - Important for many NLP tasks
 - » Grammar-checking, spelling error detection, author identification, part-of-speech tagging
- Spoken language corpora
 - Utterances don't usually have punctuation, but they do have other phenomena that we might or might not want to treat as words
 - » I do uh main- mainly business data processing
 - Fragments
 - Filled pauses
 - » *um* and *uh* behave more like words, so most speech recognition systems treat them as such

Counting words in corpora

- Capitalization
 - Should They and they be treated as the same word?
 - » For most statistical NLP applications, they are
 - » Sometimes capitalization information is maintained as a feature
 - E.g. spelling error correction, part-of-speech tagging
- Inflected forms
 - Should walks and walk be treated as the same word?
 - » No…for most n-gram based systems
 - » based on the wordform (i.e. the inflected form as it appears in the corpus) rather than the lemma (i.e. set of lexical forms that have the same stem)

Counting words in corpora

- Need to distinguish
 - word types
 - » the number of distinct words
 - word tokens
 - » the number of running words
- Example
 - All for one and one for all.
 - 8 tokens (counting punctuation)
 - 6 types (assuming capitalized and uncapitalized versions of the same token are treated separately)

- Introduction to generative models of language
 - » What are they?
 - » Why they' re important
 - » Issues for counting words
 - » Statistics of natural language
 - » Unsmoothed n-gram models