- Today
- Part-of-speech tagging
- HMM's for p-o-s tagging

HMM p-o-s Tagger

Given $W=w_{1}, \ldots, w_{n}$, find $T=t_{1}, \ldots, t_{n}$ that maximizes

$$
P\left(t_{1}, \ldots, t_{n} \mid w_{1}, \ldots, w_{n}\right)
$$

Restate using Bayes' rule:

$$
\left(P\left(t_{1}, \ldots, t_{n}\right) * P\left(w_{1}, \ldots, w_{n} \mid t_{1}, \ldots, t_{n}\right)\right) / P\left(w_{1}, \ldots, w_{n}\right)
$$

Ignore denominator...
Make independence assumptions...
$P\left(t_{1}, \ldots, t_{n}\right)$: approximate using n-gram model $\operatorname{bigram} \prod_{i=1, n} P\left(t_{i} \mid t_{i-1}\right)$
$\operatorname{trigram} \prod_{i=1, n} P\left(t_{i} \mid t_{i-2} t_{i-1}\right)$
$P\left(w_{1}, \ldots, w_{n} \mid t_{1}, \ldots, t_{n}\right)$: approximate by assuming that a word appears in a category independent of its neighbors

$$
\prod_{i=1, n} P\left(w_{i} \mid t_{i}\right)
$$

Assuming bigram model:

$$
\begin{gathered}
P\left(t_{1}, \ldots, t_{n}\right) * P\left(w_{1}, \ldots, w_{n} \mid t_{1}, \ldots, t_{n}\right) \approx \\
\prod_{i=1, n} P\left(t_{i} \mid t_{i-1}\right) * P\left(w_{i} \mid t_{i}\right) \\
\begin{array}{l}
\text { transition } \\
\text { probabilities }
\end{array} \\
\text { lexical generation } \\
\text { probabilities }
\end{gathered}
$$

Hidden Markov Models

Equation can be modeled by an HMM.

- states: represent a possible lexical category
- transition probabilities: bigram probabilities
- observation probabilities, lexical generation probabilities: indicate, for each word, how likely that word is to be selected if we randomly select the category associated with the node.

Viterbi Algorithm

Viterbi Algorithm

c: number of lexical categories
$P\left(w_{t} \mid t_{i}\right)$: lexical generation probabilities
$P\left(t_{i} \mid t_{j}\right)$: bigram probabilities
Find most likely sequence of lexical categories T_{1}, \ldots, T_{n} for word sequence.

Initialization

For $\mathrm{i}=1$ to c do
$\operatorname{SCORE}(\mathrm{i}, 1)=P\left(t_{i} \mid \phi\right) * P\left(w_{1} \mid t_{i}\right)$
$\operatorname{BPTR}(\mathrm{i}, 1)=0$

Iteration

For $\mathrm{t}=2$ to n
For $\mathrm{i}=1$ to c
$\operatorname{SCORE}(\mathrm{i}, \mathrm{t})=$
$M A X_{j=1 . . c}\left(\operatorname{SCORE}(j, t-1) * P\left(t_{i} \mid t_{j}\right)\right) * P\left(w_{t} \mid t_{i}\right)$
$\operatorname{BPTR}(\mathrm{i}, \mathrm{t})=$ index of j that gave max
Identify Sequence

$$
\begin{aligned}
& T(n)=i \text { that maximizes } \operatorname{SCORE}(\mathrm{i}, \mathrm{n}) \\
& \text { For } \mathrm{i}=\mathrm{n}-1 \text { to } 1 \text { do } \\
& \mathrm{T}(\mathrm{i})=\operatorname{BPTR}(\mathrm{T}(\mathrm{i}+1), \mathrm{i}+1)
\end{aligned}
$$

Results

- Effective if probability estmates are computed from a large corpus
- Effective if corpus is of the same style as the input to be classified
- Consistently achieve accuracies of 97% or better using trigram model
- Cuts error rate in half vs. naive algorithm (90% accuracy rate)
- Can be smoothed using backoff or interpolation or discounting...

Extensions

- Can train HMM tagger on unlabeled data using the EM algorithm, starting with a dictionary that lists which tags can be assigned to which words.
- EM then learns the word likelihood function for each tag, and the tag transition probabilities.
- Merialdo (1994) showed, however, that a tagger trained on even a small amount hand-tagged data works better than one trained via EM.

Marseille at Newman Overlook

