# Outline

- noun phrase coreference resolution
- a (supervised) machine learning approach
  - evaluation
  - problems...some solutions
  - weakly supervised approaches

Knowledge-based approaches are still common. E.g.

- Lappin & Leass [1994]
- CogNIAC [Baldwin, 1996]

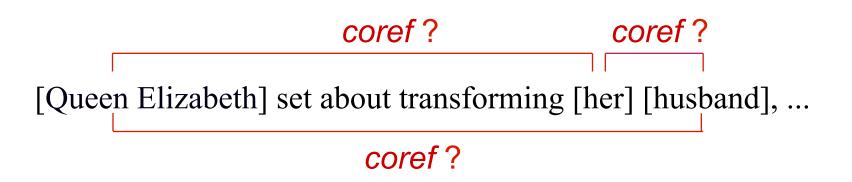


# A Machine Learning Approach

Classification

CORNELL

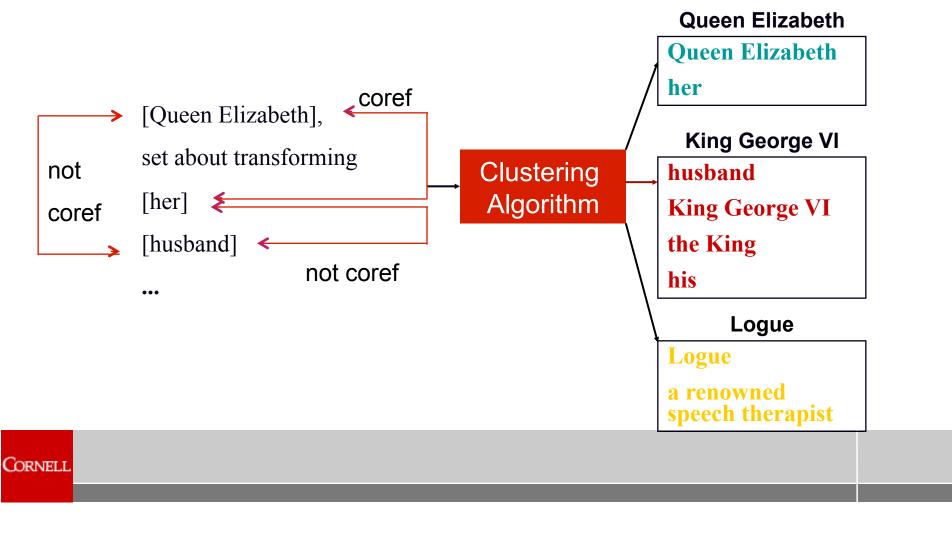
 given a description of two noun phrases, NP<sub>i</sub> and NP<sub>j</sub>, classify the pair as coreferent or not coreferent



Aone & Bennett [1995]; Connolly et al. [1994]; McCarthy & Lehnert [1995]; Soon et al. [2001]; Ng & Cardie [2002]; ...

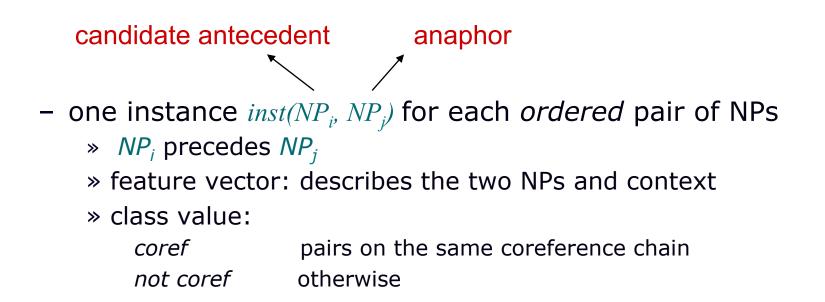
# **A Machine Learning Approach**

- Clustering
  - coordinates pairwise coreference decisions



#### **Training Data Creation**

- Creating training instances
  - texts annotated with coreference information



### **Instance Representation**

- 25 features per instance
  - lexical (3)
    - » string matching for pronouns, proper names, common nouns
  - grammatical (18)
    - » pronoun\_1, pronoun\_2, demonstrative\_2, indefinite\_2, ...
    - » number, gender, animacy
    - » appositive, predicate nominative
    - » binding constraints, simple contra-indexing constraints, ...
    - » span, maximalnp, ...
  - semantic (2)
    - » same WordNet class
    - » alias
  - positional (1)
    - » distance between the NPs in terms of # of sentences
  - knowledge-based (1)
    - » naïve pronoun resolution algorithm

### **Learning Algorithm**

- RIPPER (Cohen, 1995)
   C4.5 (Quinlan, 1994)
  - rule learners

» input: set of training instances

- » output: coreference classifier
- Learned classifier
  - » input: test instance (represents pair of NPs)
     » output: classification confidence of classification



# **Clustering Algorithm**

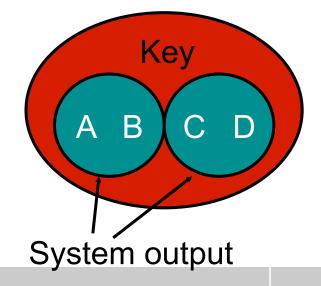
- Best-first single-link clustering
  - Mark each  $NP_j$  as belonging to its own class:  $NP_j \in c_j$
  - Proceed through the NPs in left-to-right order.
    - » For each NP, *NP<sub>j</sub>*, create test instances, *inst(NP<sub>i</sub>, NP<sub>j</sub>*), for all of its preceding NPs, *NP<sub>i</sub>*.
    - » Select as the antecedent for  $NP_j$  the highest-confidence coreferent NP,  $NP_i$ , according to the coreference classifier (or none if all have below .5 confidence); Merge  $c_i$  and  $c_i$ .

# Outline

- noun phrase coreference resolution
- a (supervised) machine learning approach
  - evaluation
  - problems...some solutions
- weakly supervised approaches

## **Evaluation**

- MUC-6 and MUC-7 coreference data sets
- documents annotated w.r.t. coreference
- 30 + 30 training texts (dry run)
- 30 + 20 test texts (formal evaluation)
- scoring program
  - recall
  - precision
  - F-measure: 2PR/(P+R)



## Results

|                 | MUC-6 |      |      |      | MUC-7 |      |  |
|-----------------|-------|------|------|------|-------|------|--|
|                 | R     | Р    | F    | R    | Р     | F    |  |
| Ng & Cardie     | 63.3  | 76.9 | 69.5 | 54.2 | 76.3  | 63.4 |  |
| Best MUC System | 59    | 72   | 65   | 56.1 | 68.8  | 61.8 |  |

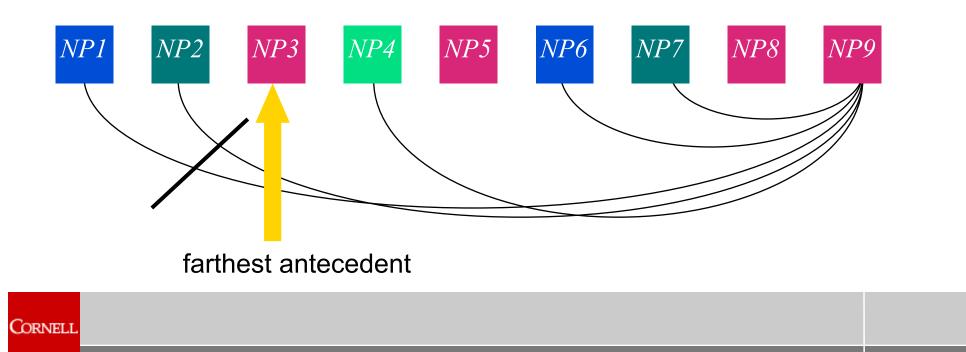
|                  | MUC-6 |      |      | MUC-7 |      |      |
|------------------|-------|------|------|-------|------|------|
|                  | R     | Р    | F    | R     | Р    | F    |
| Baseline         | 40.7  | 73.5 | 52.4 | 27.2  | 86.3 | 41.3 |
| Worst MUC System | 36    | 44   | 40   | 52.5  | 21.4 | 30.4 |
| Best MUC System  | 59    | 72   | 65   | 56.1  | 68.8 | 61.8 |

```
ALIAS = C: +
       ALIAS = I:
         SOON STR NONPRO = C:
           ANIMACY = NA:
           ANIMACY = I: -
           ANIMACY = C: +
         SOON STR NONPRO = I:
           PRO STR = C: +
           PRO STR = I:
             PRO RESOLVE = C:
               EMBEDDED 1 = Y: -
               EMBEDDED 1 = N:
                 PRONOUN 1 = Y:
                   ANIMACY = NA: -
                   ANIMACY = I: -
                   ANIMACY = C: +
                 PRONOUN 1 = N:
                   MAXIMALNP = C: +
                   MAXIMALNP = I:
                     WNCLASS = NA: -
                     WNCLASS = I: +
                     WNCLASS = C: +
             PRO RESOLVE = I:
               APPOSITIVE = I: -
               APPOSITIVE = C:
                 GENDER = NA: +
                 GENDER = I: +
CORNELL
                 GENDER = C: -
```

## Classifier for MUC-6 Data Set

#### **Problem 1**

- Coreference is a rare relation
  - skewed class distributions (2% positive instances)
  - remove some negative instances



### **Problem 2**

 Coreference is a discourse-level problem with different solutions for different types of NPs

» proper names: string matching and aliasing

- inclusion of "hard" positive training instances
- positive example selection: selects easy positive training instances (cf. Harabagiu et al. (2001))

Queen Elizabeth set about transforming her husband, - ¬

King George VI, into a viable monarch. Logue,

the renowned speech therapist, was summoned to help

the King overcome his speech impediment...

#### **Problem 3**

- Coreference is an equivalence relation
  - loss of transitivity

- need to tighten the connection between classification and clustering
- prune learned rules w.r.t. the clustering-level coreference scoring function



#### Results

|                                       | MUC-6 |      |      | MUC-7 |      |      |
|---------------------------------------|-------|------|------|-------|------|------|
|                                       | R     | Р    | F    | R     | Р    | F    |
| Baseline                              | 40.7  | 73.5 | 52.4 | 27.2  | 86.3 | 41.3 |
| NEG-SELECT                            | 46.5  | 67.8 | 55.2 | 37.4  | 59.7 | 46.0 |
| POS-SELECT                            | 53.1  | 80.8 | 64.1 | 41.1  | 78.0 | 53.8 |
| NEG-SELECT + POS-SELECT               | 63.4  | 76.3 | 69.3 | 59.5  | 55.1 | 57.2 |
| NEG-SELECT + POS-SELECT + RULE-SELECT | 63.3  | 76.9 | 69.5 | 54.2  | 76.3 | 63.4 |

• Ultimately: large increase in F-measure, due to gains in recall



#### **Comparison with Best MUC Systems**

|                                              | MUC-6 |      |      | MUC-7 |      |      |
|----------------------------------------------|-------|------|------|-------|------|------|
|                                              | R     | Р    | F    | R     | Р    | F    |
| <b>NEG-SELECT + POS-SELECT + RULE-SELECT</b> | 63.3  | 76.9 | 69.5 | 54.2  | 76.3 | 63.4 |
| Best MUC System                              | 59    | 72   | 65   | 56.1  | 68.8 | 61.8 |

## **Supervised ML for NP Coreference**

- Good performance compared to other systems, but...lots of room for improvement
  - Common nouns < pronouns < proper nouns</p>
  - Tighter connection between classification and clustering is possible
  - Need additional data sets
    - » ACE data from Penn's LDC
    - » General problem: reliance on manually annotated data...

# Outline

- noun phrase coreference resolution
- a (supervised) machine learning approach
  - weakly supervised approaches
    - background
    - two techniques
    - evaluation

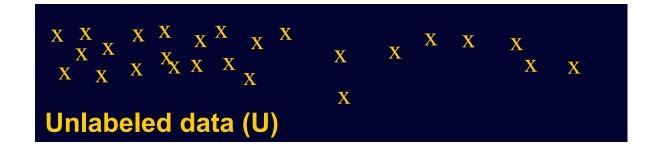
# **Weakly Supervised Approaches**

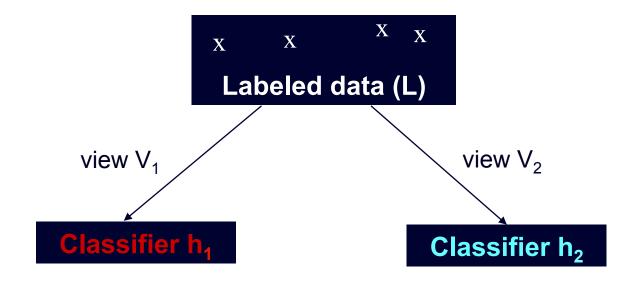
Idea:

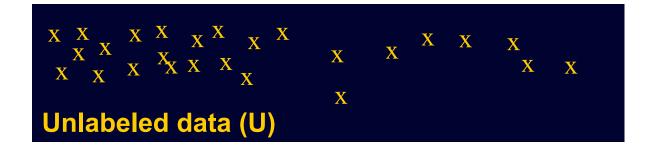
bootstrap (NP coreference) classifiers using a *small amount of labeled data* (expensive) and a *large amount of unlabeled data* (cheap)

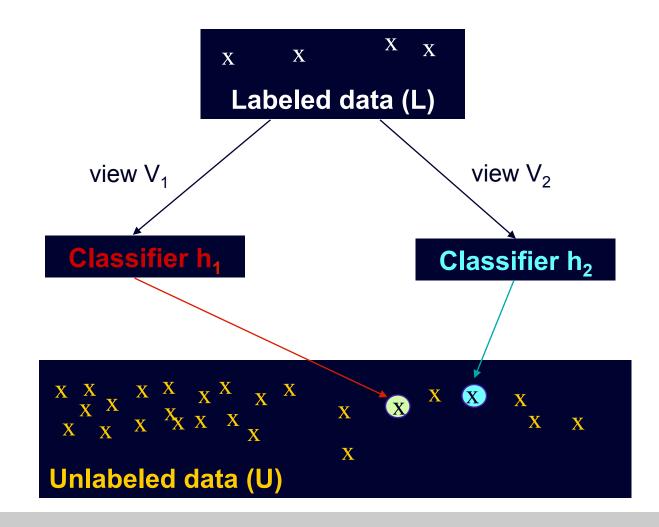
- Methods
  - Co-training
  - Self-training

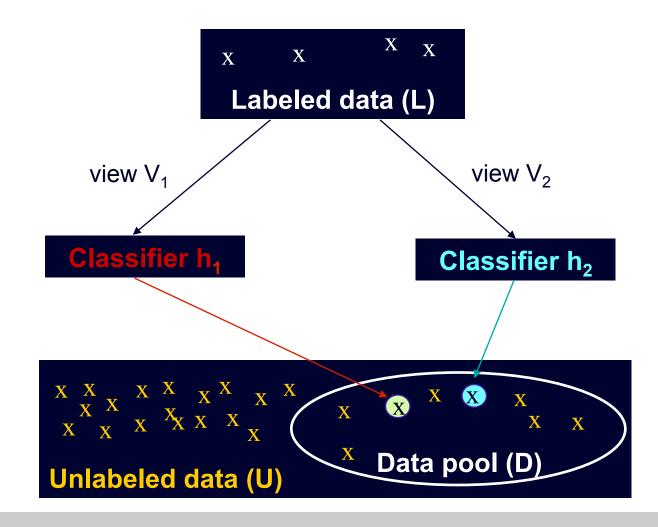


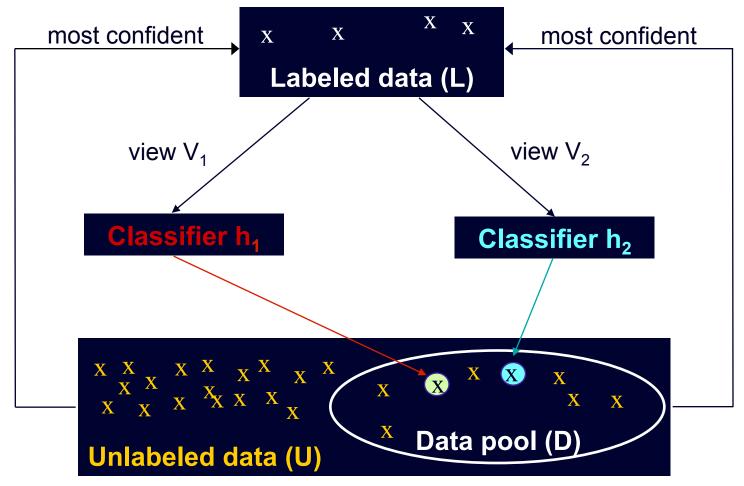












## **Potential Problems with Co-Training**

- Strong assumptions on the views (Blum and Mitchell, 1998)
  - each view must be sufficient for learning the target concept
  - the views must be conditionally independent given the class
  - empirically shown to be sensitive to these assumptions (Muslea *et al.*, 2002)
- A number of parameters need to be tuned
  - views, data pool size, growth size, number of iterations, initial size of labeled data
  - algorithm is sensitive to its input parameters (Nigam and Ghani, 2000; Pierce and Cardie, 2001; Pierce 2003)



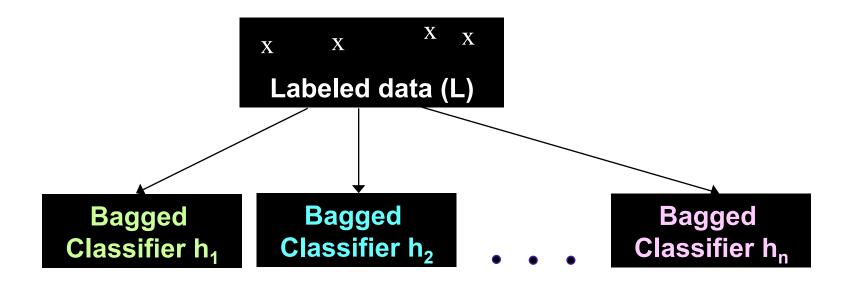
### **Potential Problems with Co-Training**

- Multi-view algorithm
  - Is there any natural feature split for NP coreference?
    - » view factorization is a non-trivial problem for coreference

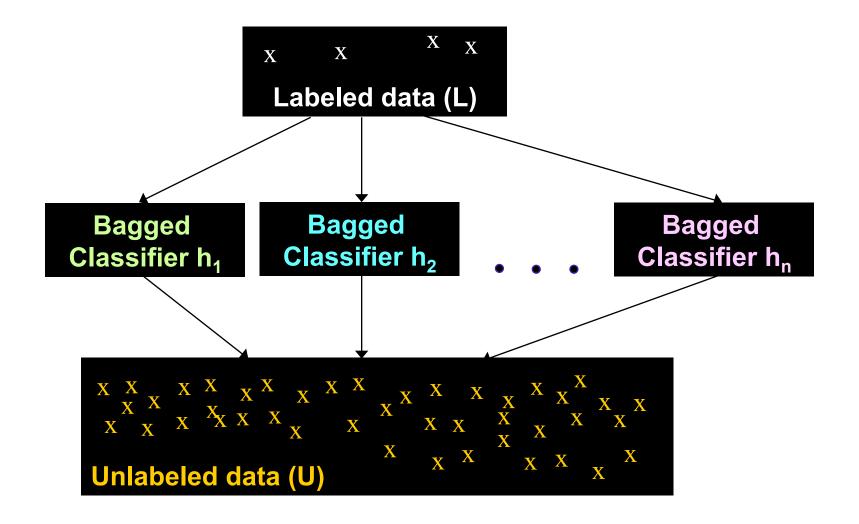
♦ Mueller *et al*.'s (2002) greedy method

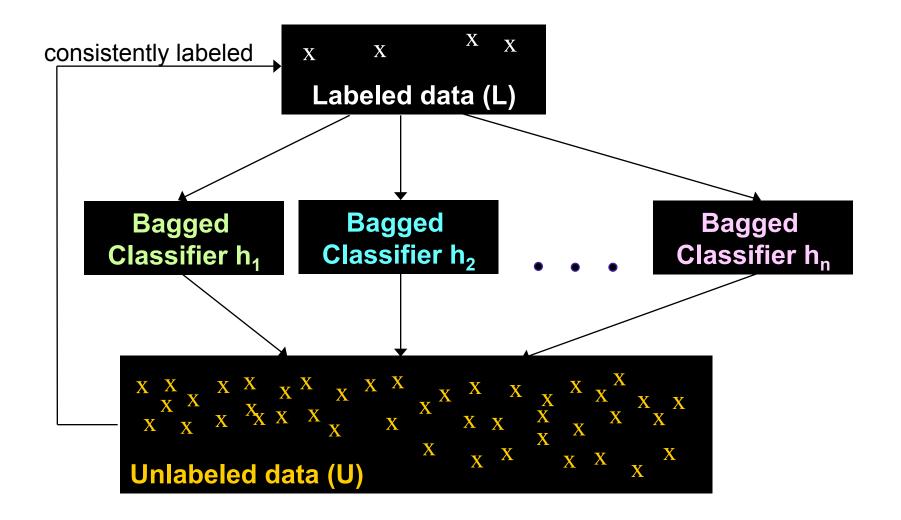












# **Plan for the Talk**

- noun phrase coreference resolution
- a (supervised) machine learning approach
- weakly supervised approaches
  - background
  - two techniques
  - evaluation

## **Evaluation**

- MUC-6 and MUC-7 coreference data sets
- labeled data (L): one dryrun text »3500-3700 instances
- unlabeled data (U): remaining 29 dryrun texts
- vs. fully supervised ML
  - ~500,000 instances (30 dryrun texts)

### **Results (Baseline)**

 train a naïve Bayes classifier on the single (labeled) text using all 25 features

|          | MUC-6 |      |      | Π    | MUC-7 |      |  |  |
|----------|-------|------|------|------|-------|------|--|--|
|          | R     | Р    | F    | R    | Р     | F    |  |  |
| Baseline | 58.3  | 52.9 | 55.5 | 52.8 | 37.4  | 43.8 |  |  |

#### **Evaluating the Weakly Supervised Algorithms**

 Determine the best parameter setting of each algorithm (in terms of its effectiveness in improving performance)



### **Co-Training Parameters**

- Views (3 heuristic methods for view factorization)
  - Mueller et al.'s (2002) greedy method
  - random splitting
  - splitting according to the feature type
- Pool size
  - 500, 1000, 5000
- Growth size
  - 10, 50, 100, 200, 250
- Number of co-training iterations
   run until performance stabilized



### **Results (Co-Training)**

|             | MUC-6 |      |      | I    | MUC-7 |      |  |
|-------------|-------|------|------|------|-------|------|--|
|             | R     | Р    | F    | R    | Р     | F    |  |
| Baseline    | 58.3  | 52.9 | 55.5 | 52.8 | 37.4  | 43.8 |  |
| Co-Training | 47.5  | 81.9 | 60.1 | 40.6 | 77.6  | 53.3 |  |

 co-training produces improvements over the baseline at its best parameter settings



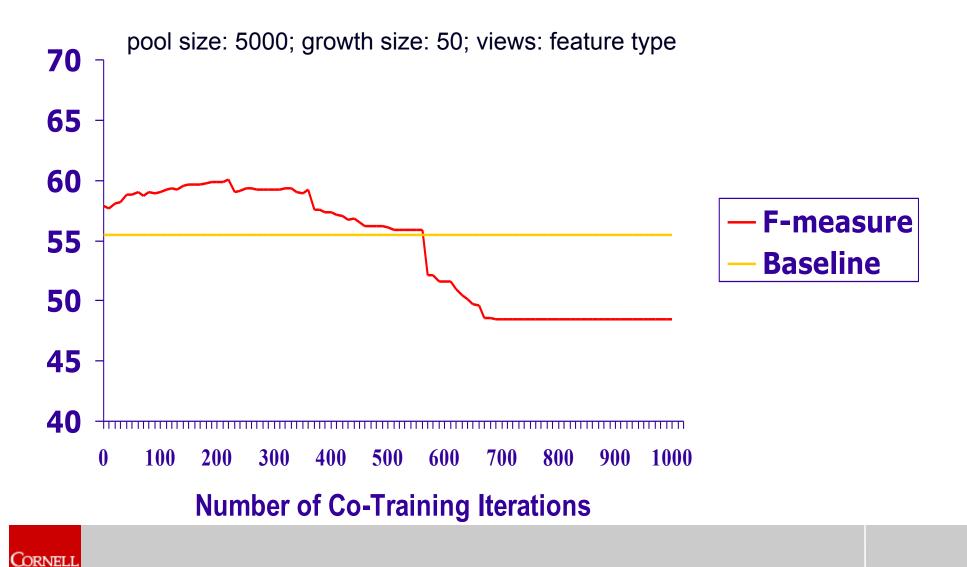
### **Results (Co-Training)**

|                                 | MUC-6 |      |      | MUC-7 |      |      |  |
|---------------------------------|-------|------|------|-------|------|------|--|
|                                 | R     | Р    | F    | R     | Р    | F    |  |
| Baseline                        | 58.3  | 52.9 | 55.5 | 52.8  | 37.4 | 43.8 |  |
| Co-Training                     | 47.5  | 81.9 | 60.1 | 40.6  | 77.6 | 53.3 |  |
| Supervised ML* (~500,000 insts) | 63.3  | 76.9 | 69.5 | 54.2  | 76.3 | 63.4 |  |

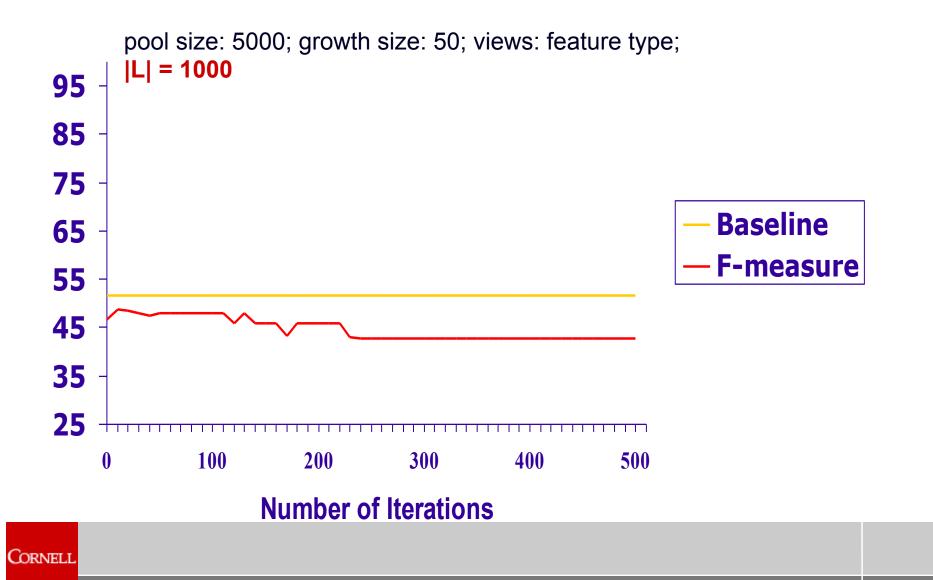
 co-training produces improvements over the baseline at its best parameter settings



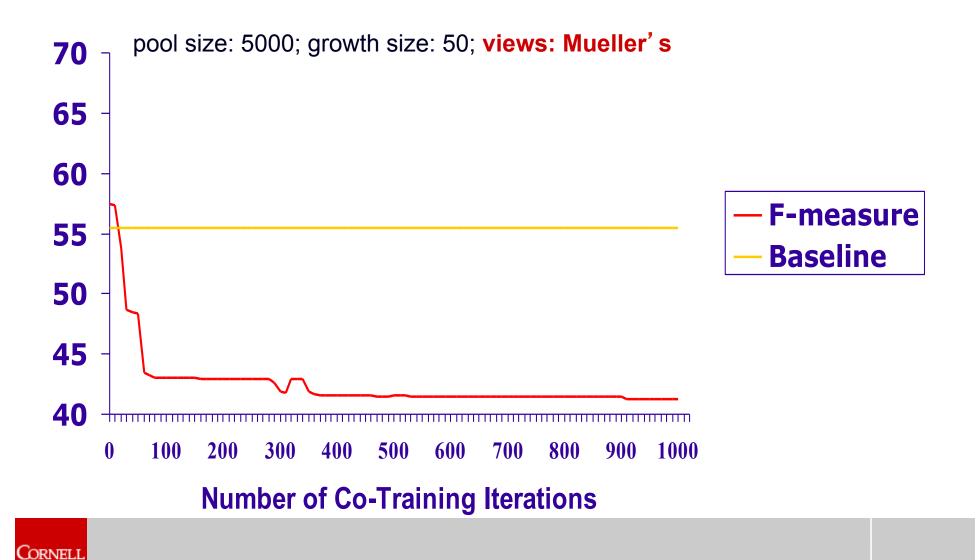
#### Learning Curve for Co-Training (MUC-6)



#### Learning Curve for Co-Training (MUC-6)



#### Learning Curve for Co-Training (MUC-6)



### **Self-Training Parameters**

- Number of bags
  - tested all odd number of bags between 1 and 25
- 25 bags are sufficient for most learning tasks (Breiman, 1996)

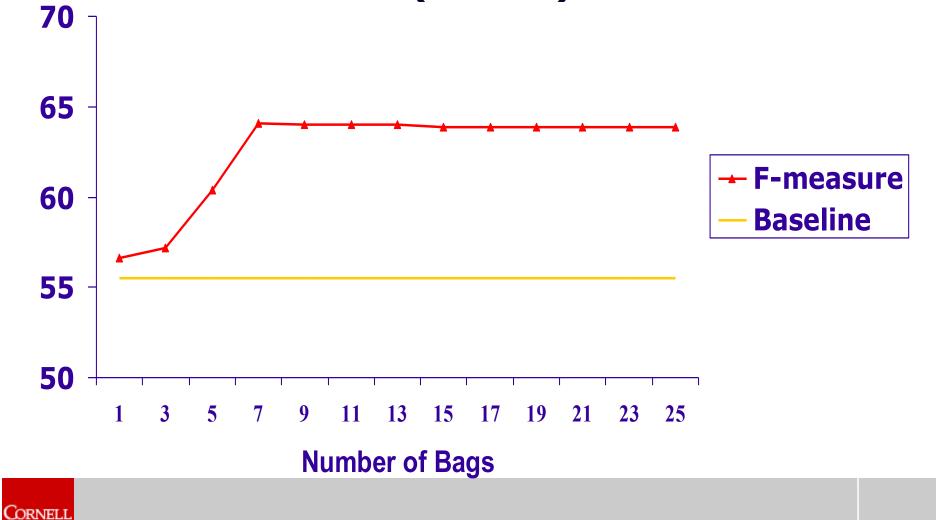
#### **Results (Self-Training with Bagging)**

|                            | MUC-6 |      |      | MUC-7 |      |      |
|----------------------------|-------|------|------|-------|------|------|
|                            | R     | Р    | F    | R     | Р    | F    |
| Baseline                   | 58.3  | 52.9 | 55.5 | 52.8  | 37.4 | 43.8 |
| Co-Training                | 47.5  | 81.9 | 60.1 | 40.6  | 77.6 | 53.3 |
| Self-Training with Bagging | 54.1  | 78.6 | 64.1 | 54.6  | 62.6 | 58.3 |

Self-training performs better than co-training



#### Self-Training: Effect of the Number of Bags (MUC-6)



#### Results

|                                 |      | MUC-6 |      |      | MUC-7 |      |  |
|---------------------------------|------|-------|------|------|-------|------|--|
|                                 | R    | Р     | F    | R    | Р     | F    |  |
| Baseline                        | 58.3 | 52.9  | 55.5 | 52.8 | 37.4  | 43.8 |  |
| Co-Training                     | 47.5 | 81.9  | 60.1 | 40.6 | 77.6  | 53.3 |  |
| Self-Training with Bagging      | 54.1 | 78.6  | 64.1 | 54.6 | 62.6  | 58.3 |  |
| Supervised ML* (~500,000 insts) | 63.3 | 76.9  | 69.5 | 54.2 | 76.3  | 63.4 |  |

### Summary

- Supervised ML approach to NP coreference resolution
  - Good performance relative to other approaches
  - Still lots of room for improvement
- Weakly supervised approaches are promising
  - Not as good performance as fully supervised, but use much less manually annotated training data
- For problems where no natural view factorization exists...
  - Single-view weakly supervised algorithms
    - » Self-training with bagging



## ...and also

- 1. Illustrate how much you've learned
- 2. Realities of doing work in NLP+ML
- 3. Introduce some cool weakly supervised learning methods

