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Planning

A planning agent will construct plans to achieve its goals, 
and then execute them.

Analyze a situation in which it finds itself and develop a 
strategy for achieving the agent’s goal. 

Achieving a goal requires finding a sequence of actions 
that can be expected to have the desired outcome. 

Problem Solving

Representation of actions

 actions generate successor states

Representation of states

 all state representations are complete

Representation of goals 

 contained in goal test and heuristic function

Representation of plans 

 unbroken sequence of actions leading from initial to goal 
state

Planning Example

GOAL: Get a quart of milk and a bunch of bananas and a 

   variable-speed cord-less drill. 

Planning vs. Problem Solving

1. Open up the representation of states, goals and 

actions. 

• States and goals represented by sets of sentences – 

Have (Milk)

• Actions represented by rules that represent their 

preconditions and effects: 

Buy(x) achieves Have(x) and leaves everything else 

unchanged

!   This allows the planner to make direct connections 

between states and actions. 

Planning vs. Problem Solving

2. Most parts of the world are independent of most other 

parts. 

• Can solve 

using divide-and-conquer strategy.

• Can re-use sub-plans (go to supermarket)



Planning vs. Problem Solving

3. Planner is free to add actions to the plan wherever 

they are needed, rather than in an incremental 

sequence starting at the initial state. 

• No connection between the order of planning and the 

order of execution. 

• Representation of states as sets of logical sentences makes 

this freedom possible. 

Planning as a Logical Inference Problem

Axioms:

 On(A,C) On(C,Table), On(D,B), On(B,Table), Clear(A), 
Clear(D)

 Plus rules for moving things around…

Prove: On (A,B) Æ On(B,C)

Planning as Deduction: Situation Calculus

In first-order logic, once a statement is shown to be true, it 
remains true forever. 

Situation calculus: way to describe change in first-order logic. 

Situation Calculus

Fluents: functions and predicates that vary from one situation 
to the next

 on(A,C)   on(A,C,S0)

 at(agent,[1,1])  at(agent, [1,1], S0)

Atemporal functions and predicates: true in any situation

 block(A)

 gold(G1)

Situation Calculus: Actions

Actions are described by stating their effects.

Possibility Axiom: preconditions !  Poss(a,s). 

Effect Axiom: Poss(a,s) !  Changes that result from action.

Situation Calculus: Action Sequences

We’d like to be able to prove:

Which would produce, for example, the following: 



Situation Calculus: Problem

Axioms:

 On(A,C,S0) On(C,Table,S0), On(D,B,S0), On(B,Table,S0), 

Clear(A,S0), Clear(D,S0)

Prove:

1. On(A,Table,Result(PoT(A),S0)) 

2. On(D,B,Result(PoT(A),S0)) 

The Frame Problem

Problem: Actions don’t specify what happens to objects not 
involved in the action, but the logic framework requires 
that information. 

Frame Axioms: Inform the system about preserved relations.

… and Its Relatives

Representational Frame Problem: proliferation of frame axioms.

 Solution: use successor-state axioms

Inferential Frame Problem: have to carry each property through 
all intervening situations during problem-solving, even if the 
property remains unchanged throughout. 

Qualification Problem: difficult, in the real world, to define the 
circumstances under which a given action is guaranteed to work

Ramification Problem: proliferation of implicit consequences of 
actions. 

The Need for Special Purpose Algorithms

So…We have a formalism for expressing goals and plans and 
we can use resolution theorem proving to find plans. 

Problems:

– Frame problem
– Time to find plan can be exponential
– Logical inference is semi-decidable
– Resulting plan could have many irrelevant steps

We’ll need to:

– Restrict language
– Use a special purpose algorithm called a planner

The STRIPS Language

States and Goals: Conjunctions of positive, function-free 
literals. No variables (i.e. “ground”). 

Closed World Assumption: any conditions that are not 
mentioned in a state are assumed false. 

Actions: 

– Preconditions: conjunction of positive, function-free literals 
that must be true before the operator can be applied.

– Effects: conjunction of function-free literals; add list and 
delete list. 

STRIPS Assumption

Assumption: Every literal not mentioned in the effect 

remains unchanged in the resulting state when the 

action is executed. 

 !  Avoids the representational frame problem.

Solution for the planning problem: 

An action sequence that, when executed in the initial 

state, results in a state that satisfies the goal. 



STRIPS Actions

Move block x from block y to block z (Put(x,y,z))

Preconds: 

Effects: Add: On(x,z), Clear(y)

   Delete: On(x,y), Clear(z)

Move block x from block y to Table (PoT(x,y))

Preconds:

Effects: Add: On(x,Table), Clear(y)

   Delete: On(x,y)

Move block x from Table to block z (TtB(x,z))

Preconds:

Effects:  Add: On(x,z)

   Delete: On(x,Table), Clear(z)

Plan by Searching for a Satisfactory 

Sequence of Actions

Planning via State-Space Search

– Progression planner searches forward from the 

initial situation to the goal situation.

– Regression planner search backwards from the 

goal state to the initial state.

– Heuristics: 

• derive a relaxed problem

• employ the subgoal independence assumption. 

Searching Plan Space

Planning via Plan-Space Search: 
– Alternative is to search through the space of plans 

rather than the original state space. 
– Start with simple, incomplete partial plan; expand until 

complete. 

– Operators: add a step, impose an ordering on existing 
steps, instantiate a previously unbound variable. 

– Refinement Operators take a partial plan and add 
constraints

– Modification Operators are anything that is not a 
refinement operator; take an incorrect plan and debug 
it. 

Representation for Plans

Goal: 

Initial state: !

Operators:

Partial Plans

Partial Plan: RightShoe LeftShoe

Partial order planner – can represent plans in which some 
steps are ordered and others are not. 

Total order planner considers a plan a simple list of steps

A linearization of a plan P is a totally ordered plan that is 
derived from a plan P by adding ordering constraints. 

Partial Plan for Shoes and Socks



Definition of a Partially-Ordered Plan

• A set of plan steps (actions).

• A set of step ordering constraints of the form 

                              written as

• A set of variable binding constraints

• A set of causal links, written as 

Initial Plan for Shoes and Socks

Initial plan: 

Partial Plan for Shoes and Socks Planner Output

A solution is a complete, consistent plan.

1. A complete plan: every precondition of every step is 
achieved by some other step.

2. A consistent plan: there are no contradictions in the 
ordering or causal constraints. Contradiction occurs when 

both Si !  Sj and Sj !  Si, or when there is a conflict between 

two causal links. 

– A conflict exists when two causal links for some literal and 
its negation are not strictly ordered.

POP Example

Actions:

Initial Plan:

A Partial Plan I

Planners must commit to bindings for variables

 Example: Goal: Have(Milk) Action: Buy(item,store)

Principle of Least Commitment: Only make choices about things that 
you care about, leaving other details to be worked out later. 

 Buy(Milk,K-MART)   versus   Buy(Milk,store)

Fully instantiated plan: every variable is bound to a constant. 



A Partial Plan II A Partial Plan III

A Partial Plan IV Protecting Causal Links

A Partial Plan IV’

Achieving At(Home)

Solution: Link At(x) to Go(SM), but order Go(Home) to 
come after Buy(Bananas) and Buy(Milk).



A Partial Plan V A Final Plan

Strengths of Partial-Order Planning Algorithms

• Takes a huge state space problem and solves in only a 

few steps.

• Least commitment strategy means that search only 

occurs in places where sub-plans interact.

• Causal links allow planner to recognize when to 

abandon a doomed plan without wasting time exploring 

irrelevant parts of the plan. 

Practical Planners

STRIPS approach is insufficient for many practical planning 
problems. Can’t express: 

– Resources: Operators should incorporate resource 
consumption and generation. Planners have to handle 
constraints on resources efficiently.

– Time: Real-world planners need a better model of time.

– Hierarchical plans: need the ability to specify plans at 
varying levels of details.

Also need to incorporate heuristics for guiding search. 

Planning Graphs

• Data structure (graphs) that represent plans, and can be 
efficiently constructed, and that allows for better heuristic 
estimates. 

• Graphplan: algorithm that processes the planning graph, 
using backward search, to extract a plan.

• SATPlan: algorithm that translates a planning problem 
into propositional axioms and applies a CSP algorithm to 
find a valid plan. 

• Take CS672 / CS475 to learn more!!



Hierarchical Planning Spacecraft Assembly, Integration and Verification 

(AIV)

• OPTIMUM-AIV used by the European Space Agency 
to AIV spacecraft.

• Generates plans and monitors their execution – ability 
to re-plan is the principle objective.

• Uses O-Plan architecture – like partial-order planner, 
but can represent time, resources and hierarchical 
plans. Accepts heuristics for guiding search and records 
its reasons for each choice. 

Scheduling for Space Missions

• Planners have been used by ground teams for the 
Hubble space telescope and for the Voyager, UOSAT-II 
and ERS-1.

• Goal: coordinate the observational equipment, signal 
transmitters and altitude and velocity-control 
mechanism in order to maximize the value of the 
information gained from observations while obeying 
resource constraints on time and energy. 


