Foundations of Artificial Intelligence

Planning

CS472 – Fall 2007 Thorsten Joachims

Planning

A planning agent will construct plans to achieve its goals, and then execute them.

Analyze a situation in which it finds itself and develop a strategy for achieving the agent's goal.

Achieving a goal requires finding a sequence of actions that can be expected to have the desired outcome.

Problem Solving

Representation of actions actions generate successor states

Representation of states all state representations are complete

Representation of goals contained in goal test and heuristic function

Representation of plans

!

unbroken sequence of actions leading from initial to goal state

Planning vs. Problem Solving

- 1. Open up the representation of states, goals and actions.
 - States and goals represented by sets of sentences Have (Milk)
 - Actions represented by rules that represent their preconditions and effects: *Buy(x)* achieves *Have(x)* and leaves everything else unchanged
- This allows the planner to make direct connections between states and actions.

Planning vs. Problem Solving

- 2. Most parts of the world are independent of most other parts.
 - Can solve Have(Milk) ∧ Have(Bananas) ∧ Have(Drill) using divide-and-conquer strategy.
 - Can re-use sub-plans (go to supermarket)

Planning vs. Problem Solving

- 3. Planner is free to add actions to the plan wherever they are needed, rather than in an incremental sequence starting at the initial state.
 - No connection between the order of planning and the order of execution.
 - Representation of states as sets of logical sentences makes this freedom possible.

Situation Calculus

Fluents: functions and predicates that vary from one situation
to the next
on(A,C) $on(A,C,S_0)$

at(agent, [1,1])

 $on(A,C,S_0)$ at(agent, [1,1], S_0)

Atemporal functions and predicates: true in any situation *block*(A) *gold*(G₁)

Situation Calculus: Actions

Actions are described by stating their effects.

Possibility Axiom: preconditions ! Poss(a,s).

 $\forall s \forall x \neg On(x, Table, s) \land Clear(x, s) \Rightarrow Poss(PlaceOnTable(x), s)]$

Effect Axiom: *Poss(a,s)* ! *Changes that result from action.*

 $\forall s \forall x Poss(PlaceOnTable(x), s) \Rightarrow \\ On(x, Table, Result(PlaceOnTable(x), s))$

Situation Calculus: Action Sequences We'd like to be able to prove: $\exists seq \ On(A,B,Result(seq,S_0)) \land On(B,C,Result(seq,S_0))$ Which would produce, for example, the following: $On(A,B,Result(Put(A,B),Result(Put(B,C),Result(PoT(D),Result(PoT(A),S_0))))))$ \land $On(B,C,Result(Put(A,B),Result(Put(B,C),Result(PoT(D),Result(PoT(A),S_0))))))$

Initial situation

Goal situation

Situation Calculus: Problem

Axioms:

 $\begin{array}{l} & \text{On}(\text{A},\text{C},\text{S}_{0}) \text{ On}(\text{C},\text{Table},\text{S}_{0}), \text{ On}(\text{D},\text{B},\text{S}_{0}), \text{ On}(\text{B},\text{Table},\text{S}_{0}), \\ & \text{Clear}(\text{A},\text{S}_{0}), \text{Clear}(\text{D},\text{S}_{0}) \\ & \forall s \forall x \neg On(x,Table,s) \land Clear(x,s) \Rightarrow Poss(PlaceOnTable(x),s) \\ & \forall s \forall x Poss(PlaceOnTable(x),s) \Rightarrow \\ & On(x,Table, Result(PlaceOnTable(x),s)) \end{array}$

Prove:

- 1. On(A,Table,Result(PoT(A),S0))
- $2. \quad On(D,B,Result(PoT(A),S0))\\$

The Frame Problem

Problem: Actions don't specify what happens to objects not involved in the action, but the logic framework requires that information.

 $\forall s \forall x Poss(PoT(x), s)) \Rightarrow On(x, Table, Result(PoT(x), s))$ Frame Axioms: Inform the system about preserved relations.

 $\forall s \forall x \forall y \forall z [(On(x, y, s) \land (x \neq z)) \Rightarrow On(x, y, Result(PoT(z), s))]$

... and Its Relatives

Representational Frame Problem: proliferation of frame axioms. **Solution:** use successor-state axioms

Action is possible \Rightarrow (Fluent is true in result state \Leftrightarrow (Action's effect made it true \lor It was true before and action left it alone)).

Inferential Frame Problem: have to carry each property through all intervening situations during problem-solving, even if the property remains unchanged throughout.

Qualification Problem: difficult, in the real world, to define the circumstances under which a given action is guaranteed to work

Ramification Problem: proliferation of *implicit* consequences of actions.

The Need for Special Purpose Algorithms

So...We have a formalism for expressing goals and plans and we can use resolution theorem proving to find plans.

Problems:

- Frame problem
- Time to find plan can be exponential
- Logical inference is semi-decidable
- Resulting plan could have many irrelevant steps

We'll need to:

!

- Restrict language
- Use a special purpose algorithm called a planner

The STRIPS Language

States and Goals: Conjunctions of positive, function-free literals. No variables (i.e. "ground").

Have (Milk) \land Have (Bananas) \land Have (Drill) \land At (Home)

Closed World Assumption: any conditions that are not mentioned in a state are assumed false.

Actions:

- Preconditions: conjunction of positive, function-free literals that must be true before the operator can be applied.
- **Effects:** conjunction of function-free literals; *add* list and *delete* list.

STRIPS Assumption

Assumption: Every literal not mentioned in the effect remains unchanged in the resulting state when the action is executed.

Avoids the representational frame problem.

Solution for the planning problem: An action sequence that, when executed in the initial state, results in a state that satisfies the goal.

	STRIPS Actions	
Move block	x from block v to block z (Put(x	(,v,z))
Preconds:	$On(x,y) \land Block(x) \land Block(x)$	ck(z)
	$\wedge Clear(x) \wedge Clear(z)$	
Effects:	Add: On(x,z), Clear(y)	
	Delete: On(x,y), Clear(z)	
Move block	x from block y to Table (PoT(x.	y))
Preconds:	$On(x,y) \wedge Block(x) \wedge Block$	$(y) \wedge Clear(x)$
Effects:	Add: On(x,Table), Clear(y)	
	Delete: On(x,y)	
Move block	x from Table to block z (TtB(x,	z))
Preconds:	$On(x, Table) \land Block(x) \land Bl$	ock(z)
	$\wedge Clear(x) \wedge Clear(z)$. ,
Effects:	Add: On(x,z)	A
	Delete: On(x,Table), Clear(z)	A D B
		C B C D

Plan by Searching for a Satisfactory Sequence of Actions

Planning via State-Space Search

- **Progression planner** searches forward from the initial situation to the goal situation.
- Regression planner search backwards from the goal state to the initial state.
- Heuristics:
 - · derive a relaxed problem
 - employ the subgoal independence assumption.

Searching Plan Space

Planning via Plan-Space Search:

- Alternative is to search through the space of *plans* rather than the original state space.
- Start with simple, incomplete partial plan; expand until complete.
- **Operators:** add a step, impose an ordering on existing steps, instantiate a previously unbound variable.
- Refinement Operators take a partial plan and add constraints
- Modification Operators are anything that is not a refinement operator; take an incorrect plan and debug it.

Representation for Plans

Goal: $RightShoeOn \land LeftShoeOn$

Initial state: !

Operators:

Action	Preconds	Effect
RightShoe	RightSockOn	RightShoeOn
RightSock	λ	RightSockOn
LeftShoe	LeftSockOn	LeftShoeOn
LeftSock	λ	LeftSockOn

Partial Plans

Partial Plan: RightShoe LeftShoe

Partial order planner – can represent plans in which some steps are ordered and others are not.

Total order planner considers a plan a simple list of steps

A linearization of a plan P is a totally ordered plan that is derived from a plan P by adding ordering constraints.

Partial Plan for Shoes and Socks Partial Order Plan: Total Order Plans:

Definition of a Partially-Ordered Plan

- A set of plan steps (actions).
- A set of step ordering constraints of the form written as $S_i \prec S_j$ written as S_i – • A set of variable binding constraints $S_i \longrightarrow S_j$
- A set of causal links, written as

$$S_i \xrightarrow{c} S_j$$

Planner Output

A solution is a complete, consistent plan.

- 1. A complete plan: every precondition of every step is achieved by some other step.
- 2. A consistent plan: there are no contradictions in the ordering or causal constraints. Contradiction occurs when both $S_i ! S_i$ and $S_i ! S_i$, or when there is a conflict between two causal links.
 - A conflict exists when two causal links for some literal and its negation are not strictly ordered.

Constitutes line	
At(x) to initial state	GO(HVVS), GO(SM)
At(x) to $Go(HVVS)$	GO(SM)
At(x) to Go(SM)	At(SM) preconds of Buy(Milk), Buy(Bananas)
Solution: Link At(x) to come after Buy(Banar	Go(SM), but order Go(Home) to nas) and Buy(Milk).

Strengths of Partial-Order Planning Algorithms

- Takes a huge state space problem and solves in only a few steps.
- Least commitment strategy means that search only occurs in places where sub-plans interact.
- Causal links allow planner to recognize when to abandon a doomed plan without wasting time exploring irrelevant parts of the plan.

Practical Planners

STRIPS approach is insufficient for many practical planning problems. Can't express:

- Resources: Operators should incorporate resource consumption and generation. Planners have to handle constraints on resources efficiently.
- Time: Real-world planners need a better model of time.
- Hierarchical plans: need the ability to specify plans at varying levels of details.

Also need to incorporate heuristics for guiding search.

Planning Graphs

- Data structure (graphs) that represent plans, and can be efficiently constructed, and that allows for better heuristic estimates.
- **Graphplan:** algorithm that processes the planning graph, using backward search, to extract a plan.
- **SATPlan:** algorithm that translates a planning problem into propositional axioms and applies a CSP algorithm to find a valid plan.
- Take CS672 / CS475 to learn more!!

Spacecraft Assembly, Integration and Verification (AIV)

- OPTIMUM-AIV used by the European Space Agency to AIV spacecraft.
- Generates plans and monitors their execution ability to re-plan is the principle objective.
- Uses O-Plan architecture like partial-order planner, but can represent time, resources and hierarchical plans. Accepts heuristics for guiding search and records its reasons for each choice.

Scheduling for Space Missions

- Planners have been used by ground teams for the Hubble space telescope and for the Voyager, UOSAT-II and ERS-1.
- Goal: coordinate the observational equipment, signal transmitters and altitude and velocity-control mechanism in order to maximize the value of the information gained from observations while obeying resource constraints on time and energy.