
1

Foundations of Artificial Intelligence

Knowledge-Based Systems

CS472 – Fall 2007
Thorsten Joachims

History of AI
1943 – 1969 The Beginnings

1943 McCulloch and Pitts show networks of neurons can compute
and learn any function

1950 Shannon and Turing wrote chess programs

1951 Minsky and Edmonds build the first neural network computer
(SNARC)

1956 Dartmouth Conference – Newell and Simon brought a reasoning
program “The Logic Theorist” which proved theorems.

1952 Samuel’s checkers player

1958 McCarthy designed LISP, helped invent time-sharing and
created Advice Taker (a domain independent reasoning system)

1960’s Microworlds – solving limited problems: SAINT (1963),
ANALOGY (1968), STUDENT (1967), blocksworld invented.

1962 Perceptron Convergence Theorem is proved.

Example ANALOGY Problem History of AI
1966 – 1974 Recognizing Lack of Knowledge

• Herb Simon (1957): Computer chess program will be
world chess champion within 10 years.

• Intractable problems, lack of computing power (Lighthill
Report, 1973)

• Machine translation

• Limitations in knowledge representation (Minsky and
Papert, 1969)

Knowledge-poor programs

Knowledge Representation
• Human intelligence relies on a lot of background knowledge

– the more you know, the easier many tasks become

– ”knowledge is power”

– E.g. SEND + MORE = MONEY puzzle.

• Natural language understanding

– Time flies like an arrow.

– Fruit flies like a banana.

– The spirit is willing but the flesh is weak. (English)

– The vodka is good but the meat is rotten. (Russian)

• Or: Plan a trip to L.A.

Knowledge-Based Systems/Agents
• Key components:

– Knowledge base: a set of sentences expressed in some
knowledge representation language

– Inference/reasoning mechanisms to query what is known and
to derive new information or make decisions.

• Natural candidate:
– logical language (propositional/first-order)
– combined with a logical inference mechanism

• How close to human thought?
– In any case, appears reasonable strategy for machines.

2

Example: Autonomous Car
State: k-tuple

(PersonInFrontOfCar, Policeman, Policecar, Slippery,
YellowLight, RedLight)

Actions:
Brake, Accelerate, TurnLeft, etc.

Knowledge-base describing when the car should brake?
(PersonInFrontOfCar ⇒ Brake)
(((YellowLight ∧ Policeman) ∧ (¬Slippery)) ⇒ Brake)
(Policecar ⇒ Policeman)
(Snow ⇒ Slippery)
(Slippery ⇒ ¬Dry)
(RedLight⇒ Brake)

Logic as a Knowledge Representation

• Components of a Formal Logic:
– syntax
– semantics (link to the world)
– logical reasoning

• entailment: α ² β
if, in every model in which α is true, β is also true.

– inference algorithm
• KB ` α, i.e., α is derived from KB
• should be sound and complete

Soundness and Completeness
Soundness:

An inference algorithm that derives only entailed sentences is
called sound or truth-preserving.

KB ` α implies KB ² α
Completeness:

An inference algorithm is complete if it can derive any
sentence that is entailed.

KB ² α implies KB ` α

Why soundness and completeness important?
Allow computer to ignore semantics and “just push
symbols”!

Propositional Logic: Syntax
• Propositional Symbols

– A, B, C, …
• Connectives

– ∧, ∨ , ¬, ⇒, ⇔
• Sentences

– Atomic Sentence: True, False, Propositional Symbol
– Complex Sentence:

• (¬ Sentence)
• (Sentence ∨ Sentence)
• (Sentence ∧ Sentence)
• (Sentence ⇒ Sentence)
• (Sentence ⇔ Sentence)

Example: Autonomous Car
Knowledge-base describing when the car should brake?

(PersonInFrontOfCar ⇒ Brake)
∧ (((YellowLight ∧ Policeman) ∧ (¬Slippery)) ⇒ Brake)
∧ (Policecar ⇒ Policeman)
∧ (Snow ⇒ Slippery)
∧ (Slippery ⇒ ¬Dry)
∧ (RedLight⇒ Brake)

Observation from sensors:
YellowLight
∧ ¬RedLight
∧ ¬Snow
∧ Dry
∧ Policecar
∧ ¬PersonInFrontOfCar

Propositional Logic: Semantics

• Model (i.e. possible world):
– Assignment of truth values to symbols
– Example: m={P=True , Q=False}

• Note: Often called “assignment” instead of “model”, and “model” is used for
an assignment that evaluates to true.

• Validity:
– A sentence α is valid, if it is true in every model.

• Satisfiability:
– A sentence α is satisfiable, if it is true in at least one model.

• Entailment:
– α ² β if and only if, in every model in which α is true, β is also true.

3

Model Checking
• Idea:

– To test whether α ² β, enumerate all models and check truth
of α and β.

– α entails β if no model exists in which α is true and β is
false (i.e. (α ∧ ¬β) is unsatisfiable)

• Proof by Contradiction:
α ² β if and only if the sentence (α ∧ ¬β) is unsatisfiable.

• Model Checking:
– Variables: One for each propositional symbol
– Domains: {true, false}
– Objective Function: (α ∧ ¬β)
– Which search algorithm works best?

Propositional Logic: Some Inference Rules

Modus Ponens:
Know: α ⇒ β If raining, then soggy courts.
and α It is raining.
Then: β Soggy Courts.

Modus Tollens:
Know: α ⇒ β If raining, then soggy courts.
And ¬ β No soggy courts.
Then: ¬ α It is not raining.

And-Elimination:
Know: α ∧ β It is raining and soggy courts.
Then: α It is raining.

Example: Forward Chaining
Knowledge-base describing when the car should brake?

(PersonInFrontOfCar ⇒ Brake)
∧ (((YellowLight ∧ Policeman) ∧ (¬Slippery)) ⇒ Brake)
∧ (Policecar ⇒ Policeman)
∧ (Snow ⇒ Slippery)
∧ (Slippery ⇒ ¬Dry)
∧ (RedLight ⇒ Brake)
∧ (Winter ⇒ Snow)

Observation from sensors:
YellowLight ∧ ¬RedLight ∧ ¬Snow ∧ Dry ∧ Policecar ∧ ¬PersonInFrontOfCar

What can we infer?
• And-elimination: Policecar ∧ (Policecar ⇒ Policeman)
• Modus Ponens: Policeman
• And-elimination: Dry ∧ (Slippery ⇒ ¬Dry)
• Modus Tollens: ¬Slippery
• And-elimination: YellowLight ∧ Policeman ∧ ¬Slippery

∧ (((YellowLight ∧ Policeman) ∧ (¬Slippery)) ⇒ Brake)
• Modus Ponens: Brake
• And-elimination: ¬Snow
• Modus Tollens: ¬Winter ∧ (Winter ⇒ Snow)

Inference Strategy: Forward Chaining
Idea:

– Infer everything (?) that can be inferred.

– Notation: In implication α ⇒ β, α (or its compontents) are
called premises, β is called consequent/conclusion.

Forward Chaining:
Given a fact p to be added to the KB,

1. Find all implications I that have p as a premise

2. For each i in I, if the other premises in i are already known
to hold

a) Add the consequent in i to the KB

Continue until no more facts can be inferred.

Inference Strategy: Backward Chaining
Idea:

– Check whether a particular fact q is true.

Backward Chaining:

Given a fact q to be “proven”,

1. See if q is already in the KB. If so, return TRUE.

2. Find all implications, I, whose conclusion “matches” q.

3. Recursively establish the premises of all i in I via
backward chaining.

Avoids inferring unrelated facts.

Example: Backward Chaining
Knowledge-base describing when the car should brake?

(PersonInFrontOfCar ⇒ Brake)
∧ (((YellowLight ∧ Policeman) ∧ (¬Slippery)) ⇒ Brake)
∧ (Policecar ⇒ Policeman)
∧ (Snow ⇒ Slippery)
∧ (Slippery ⇒ ¬Dry)
∧ (RedLight ⇒ Brake)
∧ (Winter ⇒ Snow)

Observation from sensors:
YellowLight ∧ ¬RedLight ∧ ¬Snow ∧ Dry ∧ Policecar ∧ ¬PersonInFrontOfCar

Should the agent brake (i.e. can “brake” be inferred)?
• Goal: Brake

– Modus Ponens (brake): PersonInFrontOfCar
• Failure: PersonInFrontOfCar Backtracking

• Goal: Brake
– Modus Ponens (brake): YellowLight ∧ Policeman ∧ ¬Slippery
– Known (YellowLight): Policeman ∧ ¬Slippery
– Modus Ponens (Policeman): Policecar ∧ ¬Slippery
– Known (Policecar): ¬Slippery
– Modus Tollens (¬Slippery): Dry
– Known (Dry)

