

Outline

- Transform a linear learner into a non-linear learner
- · Kernels can make high-dimensional spaces tractable
- Kernels can make non-vectorial data tractable

- Etc.
- Applications with Non-Vectorial Output Data → predict non-vectorial objects
 - Natural Language Parsing (y is parse tree)
 - Noun-Phrase Co-reference Resolution (y is clustering)
 - Search engines (y is ranking)
- ➔ Kernels can compute inner products efficiently!

Properties of SVMs with Kernels

• Expressiveness

- Can represent any boolean function (for appropriate choice of kernel)
- Can represent any sufficiently "smooth" function to
- arbitrary accuracy (for appropriate choice of kernel)
- Computational
 - Objective function has no local optima (only one global)
 - Independent of dimensionality of feature space
- Design decisions
 - Kernel type and parameters
 - Value of C