
1

Foundations of Artificial Intelligence

Neural Networks

CS472 – Fall 2007
Thorsten Joachims

Restaurant Data Set

Limited Expressiveness of Perceptrons

• Minsky and Papert (1969) showed certain simple functions
cannot be represented (e.g. Boolean XOR). Killed the
field!

• Mid 80th: Non-linear Neural Networks (Rumelhart et al.
1986)

Neural Networks
• Rich history, starting in the early forties (McCulloch and

Pitts 1943).
• Two views:

– Modeling the brain
– “Just” representation of complex functions

(Continuous; contrast decision trees)
• Much progress on both fronts.
• Drawn interest from: Neuroscience, Cognitive science, AI,

Physics, Statistics, and CS/EE.

Neuron Why Neural Nets?
Motivation:

Solving problems under the constraints similar to those of
the brain may lead to solutions to AI problems that would
otherwise be overlooked.

• Individual neurons operate very slowly
massively parallel algorithms

• Neurons are failure-prone devices
distributed representations

• Neurons promote approximate matching
less brittle

2

Connectionist Models of Learning
Characterized by:

• A large number of very simple neuron-like processing
elements.

• A large number of weighted connections between the
elements.

• Highly parallel, distributed control.

• An emphasis on learning internal representations
automatically.

Artificial Neurons

Activation Functions:

Example: Perceptron Perceptron Network

2-Layer Feedforward Networks
Boolean functions:
• Every boolean function can be

represented by network with single
hidden layer

• But might require exponential (in
number of inputs) hidden units

Continuous functions:
• Every bounded continuous function can

be approximated with arbitrarily small
error, by network with one hidden layer
[Cybenko 1989; Hornik et al. 1989]

Any function can be approximated to
arbitrary accuracy by a network with
two hidden layers [Cybenko 1988].

x1

x2

xN

o1

o2

oO

Multi-Layer Nets
• Fully connected, two layer, feedforward

3

Backpropagation Training (Overview)
Training data:

– (x1,y1),…, (xn,yn), with target labels yz∈{0,1}
Optimization Problem (single output neuron):

– Variables: network weights wi j

– Obj.:E=minw∑z=1..n(yz–o(xz))2,
– Constraints: none

Algorithm: local search via gradient descent.
• Randomly initialize weights.
• Until performance is satisfactory*,

– Compute partial derivatives (∂ E / ∂ wi j) of objective
function E for each weight wi j

– Update each weight by wi j ← wi j + α (∂ E / ∂ wi j)

Smooth and Differentiable Threshold
Function

• Replace sign function by a differentiable activation
function

sigmoid function:

Slope of Sigmoid Function Backpropagation Training (Detail)
• Input: training data (x1,y1),…, (xn,yn), learning rate parameter α.
• Initialize weights.
• Until performance is satisfactory

– For each training instance,
• Compute the resulting output

• Compute βz = (yz – oz) for nodes in the output layer

• Compute βj = ∑k wj k ok (1 – ok) βk for all other nodes.

• Compute weight changes for all weights using

∆wi j(l) = oi oj (1 – oj) βj
– Add up weight changes for all training instances, and

update the weights accordingly.
wi ,j ← wi ,j + α∑l ∆wi ,j(l)

Hidden Units
• Hidden units are nodes that are situated between the input nodes

and the output nodes.

• Hidden units allow a network to learn non-linear functions.

• Hidden units allow the network to represent combinations of the
input features.

• Given too many hidden units, a neural net will simply memorize
the input patterns (overfitting).

• Given too few hidden units, the network may not be able to
represent all of the necessary generalizations (underfitting).

How long should you train the net?

4

How long should you train the net?
• The goal is to achieve a balance between correct

responses for the training patterns and correct
responses for new patterns. (That is, a balance
between memorization and generalization).

• If you train the net for too long, then you run the
risk of overfitting.

• Select number of training iterations via cross-
validation on a holdout set.

Design Decisions
• Choice of learning rate α
• Stopping criterion – when should training stop?
• Network architecture

– How many hidden layers? How many hidden units per
layer?

– How should the units be connected? (Fully? Partial? Use
domain knowledge?)

• How many restarts (local optima) of search to find good
optimum of objective function?

