Foundations of Artificial Intelligence

Neural Networks

CS472 - Fall 2007
Thorsten Joachims

Restaurant Data Set

N ———.
o el
NPTy e g’ L
0.9 ,\",m.v’“ ¥
] i
7 08 Perceptron ——
= Decision tree
2 07
o '
E 4
E o6}] e AN
= 5.—/
0.5 b
0.4

0 10 20 30 40 S50 60 T0 80 0 100
Training set size

Limited Expressiveness of Perceptrons

o 1 & o 1

2 -
(@) [, and Iy by Iy or Iy (€} I, wor I,

« Minsky and Papert (1969) showed certain simple functions
cannot be represented (e.g. Boolean XOR). Killed the
field!

« Mid 80t: Non-linear Neural Networks (Rumelhart et al.
1986)

Neural Networks

« Rich history, starting in the early forties (McCulloch and
Pitts 1943).

¢ Two views:
— Modeling the brain

— “Just” representation of complex functions
(Continuous; contrast decision trees)

* Much progress on both fronts.

« Drawn interest from: Neuroscience, Cognitive science, Al
Physics, Statistics, and CS/EE.

Neuron

Axonal arborization

Hoeen from anather cell

Cell body or Soma

Why Neural Nets?

Motivation:

Solving problems under the constraints similar to those of
the brain may lead to solutions to Al problems that would
otherwise be overlooked.
« Individual neurons operate very slowly
massively parallel algorithms
« Neurons are failure-prone devices
distributed representations
« Neurons promote approximate matching
less brittle

Connectionist Models of Learning

Characterized by:

* A large number of very simple neuron-like processing
elements.

« A large number of weighted connections between the
elements.

« Highly parallel, distributed control.

« Anemphasis on learning internal representations
automatically.

Artificial Neurons
a; = glin)

Chatprt

Inpur Activation
Function Function Output
) 8 a
Activation Functions: —_ \
| [i, i i
—_—
{a) Stop tunction (B Sign function) Sigmoid function

Example: Perceptron

sum

threshald
1

o,

Perceptron Network

1", H} i oy 1 L o
Input Output Input Output
Units Units Units. Unit
Perceptron Network Single Perceptron

2-Layer Feedforward Networks

I 5 o 15

Boolean functions: mik e

« Every boolean function can be
represented by network with single
hidden layer

« But might require exponential (in
number of inputs) hidden units

Continuous functions:

« Every bounded continuous function can
be approximated with arbitrarily small
error, by network with one hidden layer
[Cybenko 1989; Hornik et al. 1989]

Any function can be approximated to
arbitrary accuracy by a network with
two hidden layers [Cybenko 1988]. @i = & Zu-'h.a' 4q Z"-’j.h x5
R K

Multi-Layer Nets

« Fully connected, two layer, feedforward

Marsha

Acquaintance

. Family

Backpropagation Training (Overview)

Training data:

- (XpY1)---r (X, Yn), With target labels y, €{0,1}
Optimization Problem (single output neuron):

- Variables: network weights w;;

- Obj.:E=minwzz:lun(yz—o(xz))z,o.(.m) = q(z wh,,i ;’}(Xir']_j, T,
X]

— Constraints: none
Algorithm: local search via gradient descent.
* Randomly initialize weights.
¢ Until performance is satisfactory*,
- Compute partial derivatives (0 E / 0 w,,) of objective
function E for each weight w,
— Update each weight by w, ;<= w,,; + 0 (OE/ 0w, ;)

—_

Smooth and Differentiable Threshold
Function

* Replace sign function by a differentiable activation
function
- sigmoid function: g(a) = %

1 0.5

slope
. of squashin:
squashing funccgion "o
0.5 function
0]
5.0 0.0 5.0 =0 o4 50

Slope of Sigmoid Function

f@) = i

Cdf(x) _ d 1
Slope: dx 7(;_.;?(?)

— (1 + C__""")_Q(:_m

= @FenaFe
=) ey
— @A o)

View in terms of output at node:
=0;(1 - o0y)

Backpropagation Training (Detail)

 Input: training data (x,.y,)...., (X,y,), learning rate parameter a.
« Initialize weights.
« Until performance is satisfactory
— For each training instance,
« Compute the resulting output
» Compute B, = (y, — 0,) for nodes in the output layer
+ Compute B; = 3, w;., 0, (1 - 0,) By for all other nodes.
« Compute weight changes for all weights using
Aw,5 (1) = 0;0;(1-0) B;
— Add up weight changes for all training instances, and
update the weights accordingly.
Wisy Wi ta Z| Aw‘,v/(l)

Hidden Units

« Hidden units are nodes that are situated between the input nodes
and the output nodes.

« Hidden units allow a network to learn non-linear functions.

« Hidden units allow the network to represent combinations of the
input features.

« Given too many hidden units, a neural net will simply memorize
the input patterns (overfitting).

« Given too few hidden units, the network may not be able to
represent all of the necessary generalizations (underfitting).

How long should you train the net?

Ermror versus weight updates (example 1)
001 T T T
0.009 o Tramning set eror
Validarion set ervor
0008
[
0.007 |,
é el \\"_M/;
- 0.005 b
0.004 |
0.003 |
0.002 ' :

o 5000 10000 15000 20000
Number of weight updatas

How long should you train the net?

« The goal is to achieve a balance between correct

responses for the training patterns and correct
responses for new patterns. (That is, a balance
between memorization and generalization).

If you train the net for too long, then you run the
risk of overfitting.

Select number of training iterations via cross-
validation on a holdout set.

Design Decisions

Choice of learning rate o

Stopping criterion — when should training stop?

Network architecture

— How many hidden layers? How many hidden units per
layer?

— How should the units be connected? (Fully? Partial? Use
domain knowledge?)

How many restarts (local optima) of search to find good

optimum of objective function?

