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Restaurant Data Set

Limited Expressiveness of Perceptrons

• Minsky and Papert (1969) showed certain simple functions 
cannot be represented (e.g. Boolean XOR). Killed the 
field! 

• Mid 80th: Non-linear Neural Networks (Rumelhart et al. 
1986)

Neural Networks
• Rich history, starting in the early forties (McCulloch and 

Pitts 1943).
• Two views:

– Modeling the brain
– “Just” representation of complex functions

(Continuous; contrast decision trees)
• Much progress on both fronts.
• Drawn interest from: Neuroscience, Cognitive science, AI, 

Physics, Statistics, and CS/EE.

Neuron Why Neural Nets?
Motivation:

Solving problems under the constraints similar to those of 
the brain may lead to solutions to AI problems that would 
otherwise be overlooked.

• Individual neurons operate very slowly
massively parallel algorithms

• Neurons are failure-prone devices
distributed representations

• Neurons promote approximate matching
less brittle
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Connectionist Models of Learning
Characterized by: 

• A large number of very simple neuron-like processing 
elements.

• A large number of weighted connections between the 
elements.

• Highly parallel, distributed control.

• An emphasis on learning internal representations 
automatically.

Artificial Neurons

Activation Functions:

Example: Perceptron Perceptron Network

2-Layer Feedforward Networks
Boolean functions:
• Every boolean function can be 

represented by network with single 
hidden layer

• But might require exponential (in 
number of inputs) hidden units

Continuous functions:
• Every bounded continuous function can 

be approximated with arbitrarily small 
error, by network with one hidden layer 
[Cybenko 1989; Hornik et al. 1989]

Any function can be approximated to 
arbitrary accuracy by a network with 
two hidden layers [Cybenko 1988]. 
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Multi-Layer Nets
• Fully connected, two layer, feedforward
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Backpropagation Training (Overview)
Training data: 

– (x1,y1),…, (xn,yn), with target labels yz∈{0,1}
Optimization Problem (single output neuron):

– Variables: network weights wi j

– Obj.:E=minw∑z=1..n(yz–o(xz))2,
– Constraints: none

Algorithm: local search via gradient descent.
• Randomly initialize weights. 
• Until performance is satisfactory*, 

– Compute partial derivatives (∂ E / ∂ wi j) of objective 
function E for each weight wi j

– Update each weight by wi j ← wi j + α (∂ E / ∂ wi j) 

Smooth and Differentiable Threshold 
Function

• Replace sign function by a differentiable activation 
function 

sigmoid function:

Slope of Sigmoid Function Backpropagation Training (Detail)
• Input: training data (x1,y1),…, (xn,yn), learning rate parameter α.
• Initialize weights.
• Until performance is satisfactory

– For each training instance,
• Compute the resulting output

• Compute βz = (yz – oz) for nodes in the output layer

• Compute βj = ∑k wj k ok (1 – ok) βk for all other nodes.

• Compute weight changes for all weights using

∆wi j(l) = oi oj (1 – oj) βj
– Add up weight changes for all training instances, and 

update the weights accordingly.  
wi ,j ← wi ,j + α∑l ∆wi ,j(l)

Hidden Units
• Hidden units are nodes that are situated between the input nodes

and the output nodes. 

• Hidden units allow a network to learn non-linear functions.

• Hidden units allow the network to represent combinations of the 
input features. 

• Given too many hidden units, a neural net will simply memorize 
the input patterns (overfitting).

• Given too few hidden units, the network may not be able to 
represent all of the necessary generalizations (underfitting).

How long should you train the net?
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How long should you train the net? 
• The goal is to achieve a balance between correct 

responses for the training patterns and correct 
responses for new patterns. (That is, a balance 
between memorization and generalization). 

• If you train the net for too long, then you run the 
risk of overfitting.

• Select number of training iterations via cross-
validation on a holdout set. 

Design Decisions
• Choice of learning rate α
• Stopping criterion – when should training stop?
• Network architecture

– How many hidden layers? How many hidden units per 
layer?

– How should the units be connected? (Fully? Partial? Use 
domain knowledge?)

• How many restarts (local optima) of search to find good 
optimum of objective function?


