

Top-Down Induction of DT (simplified)

Training Data: $\mathrm{D}=\left\{\left(\overrightarrow{\mathrm{x}}_{1}, \mathrm{y}_{1}\right), \ldots,\left(\overrightarrow{\mathrm{x}}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)\right\}$

TDIDF(D, $\mathrm{c}_{\text {def }}$)

- IF(all examples in D have same class c)
- Return leaf with class c (or class $\mathrm{c}_{\text {def }}$ if D is empty)
- ELSE IF(no attributes left to test)
- Return leaf with class c of majority in D
- ELSE
- Pick A as the "best" decision attribute for next node
- FOR each value v_{i} of A create a new descendent of node
- $D_{i}=\left\{(\vec{x}, y) \in D\right.$:attribute A of \vec{x} has value $\left.v_{i}\right\}$
- Subtree t_{i} for v_{i} is $\operatorname{TDIDT}\left(\mathrm{D}_{\mathrm{i}} \mathrm{c}_{\text {dee }}\right)$
- RETURN tree with A as root and t_{i} as subtrees

Example: TDIDT		
TDIDF (D, $\mathrm{c}_{\text {def }}$) -IF(all examples in D have same class c) -Return leaf with class c (or $\mathrm{c}_{\text {def }}$, if $\mathrm{D}=\varnothing$) - ELSE IF(no attributes left to test) -Return leaf with class c of majority in D -ELSE - A \leftarrow "best" decision attribute for node -FOR each value v_{i} of A create a new descendent of node - $\mathrm{D}_{\mathrm{i}}=\left\{(\overrightarrow{\mathrm{x}}, \mathrm{y}) \in \mathrm{D}\right.$: attrib. A of $\overrightarrow{\mathrm{x}}$ has val. $\left.\mathrm{v}_{\mathrm{i}}\right\}$ - Subtree t_{i} for v_{i} is TDIDT($\mathrm{D}_{\mathrm{i}}, \mathrm{c}_{\mathrm{def}}$) -RETURN tree with A as root and t_{i} as subtrees	Training Data D:	
	F S P	BigTip
	$\vec{x}_{1}=(\mathrm{g}, \mathrm{y}, \mathrm{a})$	$f\left(\vec{x}_{1}\right)=1$
	$\vec{x}_{2}=(\mathrm{g}, \mathrm{n}, \mathrm{h})$	$f\left(\vec{x}_{2}\right)=0$
	$\vec{x}_{3}=(\mathrm{g}, \mathrm{y}, \mathrm{h})$	$f\left(\vec{x}_{3}\right)=1$
	$\vec{x}_{4}=(\mathrm{g}, \mathrm{n}, \mathrm{a})$	$f\left(\vec{x}_{4}\right)=1$
	$\vec{x}_{5}=(\mathrm{m}, \mathrm{y}, \mathrm{a})$	$f\left(\vec{x}_{5}\right)=0$
	$\vec{x}_{6}=(\mathrm{y}, \mathrm{y}, \mathrm{a})$	$f\left(\vec{x}_{6}\right)=0$
	$\vec{x}_{7}=(\mathrm{g}, \mathrm{y}, \mathrm{a})$	$f\left(\vec{x}_{7}\right)=1$
	$\vec{x}_{8}=(\mathrm{g}, \mathrm{y}, \mathrm{h})$	$f\left(\vec{x}_{8}\right)=1$
	$\vec{x}_{9}=(\mathrm{m}, \mathrm{y}, \mathrm{a})$	$f\left(\vec{x}_{9}\right)=0$
	$\vec{x}_{10}=(\mathrm{g}, \mathrm{y}, \mathrm{a})$	$f\left(\vec{x}_{10}\right)=1$

Decision Tree Example: BigTip

Example: Text Classification

- Task: Learn rule that classifies Reuters Business News - Class +: "Corporate Acquisitions"
- Class -: Other articles
- 2000 training instances
- Representation:
- Boolean attributes, indicating presence of a keyword in article - 9947 such keywords (more accurately, word "stems") Laroche starts bid for neco shares 十 salant corp ist Qtr Investor David F. La Roche of North Kingstown, R.I., FEB 28 NET
said he is offering to purchase 170,000 common shares of NECO Enterprises Inc at 26 drrs each. He said the successful completion of the offer, plus shares he already owns, would give him 50.5 pet of NECO's
962,016 common shares La Roche said he may buy
more, and possible all NECO shares. He said the offer and withdrawal rights will expire at $1630 \mathrm{EST} / 2130 \mathrm{gmt}$,
March $30,1987$.

Oper shr profit seven cts vs loss 12 cts. Oper net profit 216,000 vs loss 401,000 . Sales 21.4 mln vs 24.9 mln . NOTE: Current year net excludes 142,0 operating in Chapter 11 bankruptcy.

Picking the Best Attribute to Split

- Ockham's Razor:
- All other things being equal, choose the simplest explanation
- Decision Tree Induction:
- Find the smallest tree that classifies the training data correctly
- Problem
- Finding the smallest tree is computationally hard
- Approach
- Use heuristic search (greedy search)

Which Attribute is "Best"?

Decision Tree for "Corporate Acq."

TDIDT Extensions

- Numerical (continuous) attributes
- Use > and < in attribute tests

- Finite attributes with many values
- Example:
- Target concept is "brakes defect"
- Instances: all cars in the US
- Attributes: Manufacturer (3 values), VIN (100.000.000 values)
- Which attribute will Information Gain select? \rightarrow GainRatio
- Numerical (continuous) target attribute (regression)
- E.g. pick attribute test so that target values become more similar
- E.g. predict mean value of examples in each leaf
- Early stopping and Pruning

How Expressive are Decision Trees?

- What functions h: $\mathbf{X} \rightarrow \mathbf{Y}$ can a decision tree represent?
- Assume that X is finite (only finite number of instances)
\rightarrow Decision trees can represent any function over a finite instance space X .
- What if X is not finite (e.g. integer-valued attributes)?
- What if X is not discrete (e.g. real-valued attributes)?
- What if the data contains noise?
- In the most extreme case, examples can have the same attribute values, but different labels.

