Foundations of Artificial Intelligence

Instance-Based Learning

CS472 – Fall 2007 Thorsten Joachims

What is Learning?

- Examples
 - Riding a bike (motor skills)
 - Telephone number (memorizing)
 - Read textbook (memorizing and operationalizing rules)
 - Playing backgammon (strategy)
 - Develop scientific theory (abstraction)
 - Language
 - Recognize fraudulent credit card transactions
 - Etc.

(One) Definition of Learning

Definition [Mitchell]:

- A computer program is said to learn from
 - experience E with respect to some class of
 - tasks T and
 - performance measure P,
- if its performance at tasks in T, as measured by P, improves with experience E.

Examples

Spam Filtering

- T: Classify emails HAM / SPAM
- E: Examples $(e_1,HAM),(e_2,SPAM),(e_3,HAM),(e_4,SPAM), \dots$
- P: Prob. of error on new emails
- Personalized Retrieval
 - T: find documents the user wants for query
 - $-\,$ E: watch person use Google (queries / clicks)
 - P: # relevant docs in top 10
- Play Checkers
 - T: Play checkers
 - E: games against self
 - P: percentage wins

How can an Agent Learn?

Learning strategies and settings

- rote learning
- · learning from instruction
- · learning by analogy
- · learning from observation and discovery
- · learning from examples

-Carbonell, Michalski & Mitchell.

Inductive Learning / Concept Learning

- Task:
 - Learn (to imitate) a function f: X $\boldsymbol{\rightarrow}$ Y
- Training Examples:
 - Learning algorithm is given the correct value of the function for particular inputs → training examples
 An example is a pair (x, f(x)), where x is the input
 - and f(x) is the output of the function applied to x.
- Goal:
 - Learn a function h: $X \rightarrow Y$ that approximates f: $X \rightarrow Y$ as well as possible.

	Co	ncep	t Leai	ming E	Exam	ple
	Food (3)	Chat (2)	Fast (2)	Price (3)	Bar (2)	BigTip
	great	yes	yes	normal	no	yes
	great	no	yes	normal	no	yes
	mediocre	yes	no	high	no	no
	great	yes	yes	normal	yes	yes
Targe	t Function	(0 f: Map (0	ften call ping fro ften call	ed feature m Attribu ed label)	s). tes to T (f is unl	arget Fea known)
Hypot	hesis Spac	e H: Se	et of all o	classificat	ion rule	s h _i we al
Traini	ng Data D	: Set of	f instanc	es labeled	with T	arget Fea

Classification and Regression Tasks

Naming:

If Y is a the real numbers, then called "regression". If Y is a discrete set, then called "classification".

- Examples:
- Steering a vehicle: image in windshield → direction to turn the wheel (how far)
- Medical diagnosis: patient symptoms → has disease / does not have disease
- Forensic hair comparison: image of two hairs \rightarrow match or not
- Stock market prediction: closing price of last few days → market will go up or down tomorrow (how much)
- Noun phrase coreference: description of two noun phrases in a document → do they refer to the same real world entity

Inductive Learning Algorithm

• Task:

- Given: collection of examples
- Return: a function h (hypothesis) that approximates f
- Inductive Learning Hypothesis: Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over any other unobserved examples.
- Assumptions of Inductive Learning: – The training sample represents the population
 - The input features permit discrimination

Instance-Based Learning

- Idea:
 - Similar examples have similar label.
 - Classify new examples like similar training examples.
- Algorithm:
 - Given some new example \boldsymbol{x} for which we need to predict its class \boldsymbol{y}
 - Find most similar training examples
 - Classify x "like" these most similar examples
- Questions:
 - How to determine similarity?
 - How many similar training examples to consider?
 - How to resolve inconsistencies among the training examples?

K-Nearest Neighbor (KNN)

- Given: Training data (\$\$\vec{x}_1, y_1), ..., (\$\vec{x}_n, y_n)\$
 - Attribute vectors: $\vec{x}_i \in X$
 - Target attribute: $\mathbf{b}_i \in \{-1, +1\}$
- Parameter:
 - Similarity function: $K : X \times X \longrightarrow \Re$
 - Number of nearest neighbors to consider: k
- Prediction rule
- New example x'
- K-nearest neighbors: k training examples with largest K(Z_i, Z)

 $h(\vec{x}') = \arg \max_{y \in Y} \left\{ \sum_{i \in knn(\vec{x}')} \mathbf{1}_{[y_i = y]} \right\}$

1 great yes yes normal no yes 2 great no yes normal no yes 3 mediocre yes no high no no 4 great yes yes normal yes yes few examples: - (great, no, no, normal, no) (great, no, no, normal, no) (great, no, no, normal, no)		Food (3)	Chat (2)	Fast (2)	Price (3)	Bar (2)	BigTip
2 great no yes normal no yes 3 mediocre yes no high no no 4 great yes yes normal yes yes w examples: (great, no, no, normal, no)	1	great	yes	yes	normal	no	yes
3 mediocre yes no high no no 4 great yes yes normal yes yes v examples: (great, no, no, normal, no)	2	great	no	yes	normal	no	yes
4 great yes yes normal yes yes wexamples: (great, no, no, normal, no)	3	mediocre	yes	no	high	no	no
w examples: (great, no, no, normal, no)	4	great	yes	yes	normal	yes	yes
(mediocre, yes, no, normal, no)	0.11 0.1	eat no no n	ormal, r	10)			

Curse-of-Dimensionality

- Prediction accuracy can quickly degrade when number of attributes grows.
 - Irrelevant attributes easily "swamp" information from relevant attributes

 $K(\vec{z}_i, \vec{z}') \sim e^{-\left(\sum_{j \in A_{rel}} (\vec{z}_i[j] - \vec{z}[j])^2 + \sum_{j \in A_{irrel}} (\vec{z}_i[j] - \vec{z}[j])^2\right)}$

- →When many irrelevant attributes, similarity measure becomes less reliable
- Remedy
 - Try to remove irrelevant attributes in pre-processing step
 - Weight attributes differently
 - Increase k (but not too much)

Remarks on KNN

- · Memorizes all observed instances and their class
- Is this rote learning?
- Is this really learning?
- When does the induction take place?