
1

Foundations of Artificial Intelligence

Adversarial Search

CS472 – Fall 2007
Thorsten Joachims

Game Playing
An AI Favorite

• structured task

• clear definition of success and failure

• does not require large amounts of knowledge
(at first glance)

• focus on games of perfect information

Game Playing

Initial State is the initial board/position

Successor Function defines the set of legal moves from any
position

Terminal Test determines when the game is over

Utility Function gives a numeric outcome for the game

Game Playing as Search

x

Partial Search Tree for Tic-Tac-Toe

x

xx x
x x x

x x x

x o
o

o o o

o
o
o

o
o o

o

o o

o

x

xx x
x x

x

xx

x
x

x

x x

x
x

x x
x

o

…

…… ……

…

…

MIN(O)

MAX(X)

MIN(O)

TERMINAL

UTILITY

MAX(X)

0 +1-1

Simplified Minimax Algorithm
1. Expand the entire tree below the root.

2. Evaluate the terminal nodes as wins for the minimizer or
maximizer (i.e. utility).

3. Select an unlabeled node, n, all of whose children have been
assigned values. If there is no such node, we're done ---
return the value assigned to the root.

4. If n is a minimizer move, assign it a value that is the
minimum of the values of its children. If n is a maximizer
move, assign it a value that is the maximum of the values of
its children. Return to Step 3.

2

Another Example

1A 3A
2A

3

3

3

2 2

2 2

A A A A A A A A A

12

12

8 4 6 14 5

11 13 21 22 23 31 32 33

MAX

MIN

Minimax
function MINIMAX-DECISION(game) returns an operator

for each op in OPERATORS[game]do
VALUE[op]←MINIMAX-VALUE(APPLY(op,game),game)

end
return the op with the highest VALUE[op]

function MINIMAX-VALUE(state,game) returns a utility value
if TERMINAL-TEST[game](state) then

return UTILITY[game](state)
else if MAX is to move in state then

return the highest MINIMAX-VALUE of SUCCESSORS(state)
else

return the lowest MINIMAX-VALUE of SUCCESSORS(state)

Improving Minimax: Pruning

Idea: Avoid generating the whole search tree

Approach: Analyze which subtrees have no
influence on the solution

α β− Features of Evolution

m

n

Player

Opponent

..

..

Player

Opponent

If m is better than n for Player, never get to n in play.

Search

= lower bound on Max's outcome; initially set to -
= upper bound on Min's outcome ; initially set to +

We'll call procedure recursively with a narrowing range
between and .

Maximizing levels may reset to a higher value;
Minimizing levels may reset to a lower value.

α β−

α
β

∞
∞

α β−
α

β
α

β

Search Algorithm

1. If terminal state, compute e(n) and return the result.
2. Otherwise, if the level is a minimizing level,

• Until no more children or
- search on a child

- If
• Return min

3. Otherwise, the level is a maximizing level:
• Until no more children or

– search on a child.
– If

• Return

β α≤

()iυmax

,α β≥

, set i iυ α α υ> ←

iυ α β← −

()iυ

iυ α β← −

, .i iυ β β υ< ←

α β−

3

Search Space Size Reductions

Worst Case: In an ordering where worst options evaluated first,
all nodes must be examined.

Best Case: If nodes ordered so that the best options are evaluated
first, then what?

The Need for Imperfect Decisions

Problem: Minimax assumes the program has time to search
to the terminal nodes.

Solution: Cut off search earlier and apply a heuristic
evaluation function to the leaves.

Static Evaluation Functions

Minimax depends on the translation of board quality into
single, summarizing number. Difficult. Expensive.

• Add up values of pieces each player has (weighted by
importance of piece).

• Isolated pawns are bad.
• How well protected is your king?
• How much maneuverability to you have?
• Do you control the center of the board?
• Strategies change as the game proceeds.

Design Issues for Heuristic Minimax

Evaluation Function:

Need to be carefully crafted and depends on game! What
criteria should an evaluation function fulfill?

Linear Evaluation Functions

•

• This is what most game playing programs use

• Steps in designing an evaluation function:

1. Pick informative features.

2. Find the weights that make the program
play well

1 1 2 2 ... n nw f w f w f+ + +

Design Issues for Heuristics Minimax

Search: search to a constant depth

What are problems with constant search depth?

4

Backgammon Board
1 2 3 4 5 70 8 9 10 11 126

24 23 22 2025 19 18 17 16 15 14 1321

• Goal: move all of your pieces off the board before your
opponent does.

• Black moves counterclockwise toward 0.

• White moves clockwise toward 25.

• A piece can move to any position except one where there are
two or more of the opponent's pieces.

• If it moves to a position with one opponent piece, that piece
is captured and has to start it's journey from the beginning.

Backgammon - Rules

• If you roll doubles you take 4 moves
(example: roll 5,5, make moves 5,5,5,5).

• Moves can be made by one or two pieces
(in the case of doubles by 1, 2, 3 or 4 pieces)

• And a few other rules that concern bearing off and forced
moves.

Backgammon - Rules
1 2 3 4 5 70 8 9 10 11 126

24 23 22 2025 19 18 17 16 15 14 1321

White has rolled 6-5 and has 4 legal moves: (5-10,5-11),
(5-11,19-24), (5-10,10-16) and (5-11,11-16).

Game Tree for Backgammon
MAX

DICE

MIN

DICE

MAX

TERMINAL

… … …

…

…

…

………

…
…

… …

…
…

…

…

…

1/18
1,2

1/36
1,1 6,5 6,6

6,5 6,6

1/18
1,2

1/36
1,1

C

Expectiminimax

for n, a chance node

for n, a Min node

for n, a Max node

for n, a terminal stateUtility(n)

Expectiminimax(n) =

expectiminimax()s∈s Succ(n) max
expectiminimax ()s∈s Succ(n) min

() () * expectim in im ax ()s Succ n P s s∈Σ

5

Evaluation function

1.32.1

2

.1 .9.9 .1

1

1A 2A

4

3

22 3 3

1

1 4

4

40.921

20

.1 .9.9 .1

1

1A 2A

1

1

20

20 30 30

30

40 40

40

State of the Art in Backgammon

• 1980: BKG using two-ply (depth 2)
search and lots of luck defeated the
human world champion.

• 1992: Tesauro combines Samuel's
learning method with neural networks to
develop a new evaluation function
(search depth 2-3), resulting in a program
ranked among the top 3 players in the
world.

State of the Art in Checkers

• 1952: Samuel developed a checkers program that learned
its own evaluation function through self play.

• 1990: Chinook (J. Schaeffer) wins the U.S. Open. At the
world championship, Marion Tinsley beat
Chinook.

• 2005: Schaeffer et al. solved checkers for “White Doctor”
opening (draw) (about 50 other openings).

State of the Art in Go
Large branching factor makes regular search
methods inappropriate.

Best computer Go programs ranked only
“weak amateur”.

Employ pattern recognition techniques and
limited search.

$2,000,000 prize available for first computer
program to defeat a top level player.

History of Chess in AI

Early 1950's Shannon and Turing both had programs that (barely)
played legal chess (500 rank).

1950's Alex Bernstein's system, (500 + ε)

1957 Herb Simon claims that a computer chess program would be
world chess champion in 10 years...yeah, right.

Gary Kasparov2900

World-ranked2000

Occasional player1200

Legal chess500

1966 McCarthy arranges computer chess match, Stanford vs. Russia.
Long, drawn-out match. Russia wins.

1967 Richard Greenblatt, MIT. First of the modern chess programs,
MacHack (1100 rating).

1968 McCarthy, Michie, Papert bet Levy (rated 2325) that a computer
program would beat him within 10 years.

1970 ACM started running chess tournaments. Chess 3.0-6 (rated 1400).

1973 By 1973...Slate: “It had become too painful even to look at Chess
3.6 any more, let alone work on it.”

1973 Chess 4.0: smart plausible-move generator rather than speeding up
the search. Improved rapidly when put on faster machines.

6

1976 Chess 4.5: ranking of 2070.

1977 Chess 4.5 vs.~Levy. Levy wins.

1980's Programs depend on search speed rather than knowledge (2300 range).

1993 DEEP THOUGHT: Sophisticated special-purpose computer;
search; searches 10-ply; singular extensions; rated about 2600.

1995 DEEP BLUE: searches 14-ply; iterative deepening search;
considers 100-200 billion positions per move; regularly reaches depth 14;
evaluation function has 8000+ features; singular extensions to 40-ply;
opening book of 4000 positions; end-game database for 5-6 pieces.

1997 DEEP BLUE: first match won against world-champion (Kasparov). 2002
IBM declines re-match. FRITZ played world champion Vladimir Kramnik. 8
games. Ended in a draw.

α β−

α β−

Concludes “Search”

• Uninformed search: DFS / BFS / Uniform cost search
time / space complexity
size search space: up to approx. 1011 nodes
special case: Constraint Satisfaction / CSPs

generic framework: variables & constraints
backtrack search (DFS); propagation
(forward-checking / arc-consistency,
variable / value ordering

Informed Search: use heuristic function guide to goal
Greedy best-first search
A* search / provably optimal
Search space up to approximately 1025

Local search
Greedy / Hillclimbing
Simulated annealing
Tabu search
Genetic Algorithms / Genetic Programming
search space 10100 to 101000

Aversarial Search / Game Playing
minimax Up to ~1010 nodes, 6–7 ply in chess.
alpha-beta pruning Up to ~1020 nodes, 14 ply in

chess. provably optimal

Search and AI
Why such a central role?

• Basically, because lots of tasks in AI are intractable.
Search is “only” way to handle them.

• Many applications of search, in e.g., Learning / Reasoning /
Planning / NLU / Vision

• Good thing: much recent progress (1030 quite feasible;
sometimes up to 101000).

Qualitative difference from only a few years ago!

