Foundations of Artificial Intelligence

CS472/3
Lecture #3

Bart Selman

Slide CS472-1

Today’s Lecture

Problem Solving as Search, cont.

Uninfomed search
Readings: R&N, Chapter 3.

Slide CS472-2

Evaluating a Search Strategy

Completeness: is the strategy guaranteed to find a

solution when there is one?

Time Complexity: how long does it take to find a
solution?

Space Complexity: how much memory does it need?

Optimality: does the strategy find the highest-quality
solution when there are several different solutions?

Slide CS472-3

Uninformed search: BFS
. /\.

Consider paths of length 1, then of length 2, then of length
3, then of length 4,....

Slide CS472-4

Time and Memory Requirements for BFS — O(b?)

Let b = branching factor, d = solution depth, then the maximum

number of nodes expanded is: 1+ b+ b> + ... + b

Depth Nodes Time Memory
0 1 1 millisecond 100 bytes
2 111 .1 seconds 11 kilobytes
4 11,111 11 seconds 1 megabyte
6 106 18 minutes 111 megabytes
8 108 31 hours 11 gigabytes
10 101 128 days 1 terabyte
12 1012 35 years 111 terabytes
14 10" 3500 years 11,111 terabytes

b = 10, 1000 nodes/second; 100 byte/node.

Slide CS472-5

BFS

Memory is serious problem!
DFS a much better alternative.

Exponential time also a factor, but we’ll see
later on that a few more “tricks” enable us
to effectively search huge state spaces.

E.g., chess: 10" / planning: 10%.

Slide CS472-6

Uninformed search: DFS

T
R

Slide CS472-7

DFS vs. BES
Complete? Optimal? Time
BFS YES “YES” b?
DFS finite depth NO o™
Time

m = d — DFS typically wins
m > d — BFS might win

Space
bd

bm

m is infinite — BF'S probably will do better

Space
DFS almost always beats BFS

Slide CS472-8

Which search should I use?
Depends on the problem.

If there may be infinite paths, then depth-first is probably
bad. If goal is at a known depth, then depth-first is good.

If there is a large (possibly infinite) branching factor, then
breadth-first is probably bad.

(Could try nondeterministic search. Expand an open node

at random.)

Slide CS472-9

Iterative Deepening [Korf 1985]

Idea:
Use an artificial depth cutoff, c.

If search to depth ¢ succeeds, we're done. If not, increase c

by 1 and start over.

Each iteration searches using DFS.

Slide CS472-10

Iterative Deepening

Idea:
Use an artificial depth cutoff, c.

If search to depth ¢ succeeds, we're done. If not, increase c

by 1 and start over.

Each iteration searches using DF'S.

Slide CS472-11

Space requirements? Same as DFS. Each search is just a DFS.

Time requirements. Would seem very expensive!! BUT not
much different from single BF'S or DFS to depth d.

Reason: Almost all work is in the final couple of layers.
E.g., binary tree: 1/2 the nodes are in the bottom layer.
With b = 10, 9/10th of the nodes in final layer!

So, repeated runs are on much smaller trees (become

exponentially smaller).

Slide CS472-12

Example: b=10, d=5, the number of nodes expanded in DFS
1410+ 100 + 1000 4 10,000 + 100, 000 = 111, 111
bottom level is expanded once, second to bottom twice...
(d+ D)1+ (d)b+ (d — 1) + ... + 26471 + 14 ie.:
6 + 50 4 400 + 3, 000 + 20, 000 + 100, 000 = 123,456
only about 11% more!
Ratio of ID to DFS: (b+1)/(b-1).
Cost of repeating the work is not prohibitive.
(Note: quite a clever insight.)

Slide CS472-13

Cost of Iterative Deepening

space: O(bd) (as DFS); time: O(b%)

b | ratio of ID to DFS
2 3
3 2
5 1.5
10 1.2
25 1.08
100 1.02

Slide CS472-14

Bidirectional Search

Slide CS472-15

Search forward from the start state and backward from
the goal state simultaneously and stop when the two
searches meet in the middle

If branching factor = b from both directions, and
solution exists at depth d, then need only
O(2b%2) = O(b%/?) steps.

Example b = 10, d = 6 then BFS needs 1,111,111 nodes

and bidirectional search needs only 2,222.

Issues: what does it mean to search backwards from a
goal? What if there is more than one goal state? (chess).

Slide CS472-16

Uniform-cost Search

Use BFS, but always expand the lowest-cost node on the

fringe as measured by path cost g(n) to find optimal

solution.

See p. 75 R&N.

Slide CS472-17

Comparing Search Strategies

Criterion Breadth- Uniform- Depth- Depth- Iterative Bidirectional
First Cost First Limited Deepening (if applicable)
Time b b b™ b b [
Space b (o bm bl bd p¥2
Optimal? Yes Yes No No Yes Yes
Complete? Yes Yes No Yes, if | > d Yes Yes

Slide CS472-18

