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Rich history, starting in the early forties.
(McCulloch and Pitts 1943)
(including at least on suspicious death .. .)

Two views:
e Modeling the brain.
e “Just” representation of complex functions.

(Continuous; contrast decision trees.)
Much progress on both fronts.

Drawn interests from:

Neuro-science, Cognitive science, Al,

Physics, Statistics, and CS / FE.
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Neurons / nerve cells

cell body or soma
branches: dendrited
single long fiber: axom
(100 or more times the diameter of cell body)
axon connects via synapsis to dendrites of other cells
signals propagated via complicated electrochemical
reaction
each cell has a certain electrical potential
when above threshold, pulse is sent

down axon



synapses can increase (excitatory) / decrease
(inhibitory) potential (signal)
but most importantly: have plasticity — can
learn / remember!
In fact, learning can happen to single cell!
Note: current model gives neuron with little
stucture. Complexity arises out of connectivity.
Not clear this is “final” model.

Idea: collection of simple cells leads to complex
behavior: thought, action, and consciousness .. ..
Challenged by e.g. Penrose.

Contrast with current computer design.



Massively Parallel

Neurons: highly parallel computation.
10 to 100 steps — given simple timing
constraints, one can deduce that certain visual
and other cognitive computations are carried out
in about 10 to 100 layers of neurons.

Interesting experiments about how visual
features we can detect in parallel.

Appears to need massive parallelism.



Computer Human Brain
Computational units 1 CPU, 10° gates 10*! neurons
Storage units 10° bits RAM, 10*° buts disk 10! neurons, 10 synapses
Cycle time 10-8 sec 103 sec
Bandwidth 10° bits/sec 10 bits/sec
Neuron updates/sec 10° 101




Tempting enterprise:
Design computer modeled after the brain.

Good company: Von Neumann (1958)
The Computer and the Brain

But the connection machine was not successful
(Hillis 1989 / Thinking Machines)

64K processors.

What was the problem?



R&N:

The exact way in which the brain enables thought

is one of the great mysteries of science.

Much recent progress .. ..
Still, there are skeptics. Especially in CS.



The Skeptic’s Position

Related to “levels of abstractions” common in CS.
(less so in EE / Cogn. Sci.)

Consider: Try to figure out how a computer program
performing a heap sort works.

Q. How far would you get with a voltmeter? Wiring diagram?

Possibly the wrong level of abstraction!

Could be similar problem in understanding higher cognition
using FMRI scans!
Still, let’s see what neural net research has achieved.
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New York Times: “Scientists See Promise in Deep-Learning
Programs,” Saturday, Nov. 24, front page.

Multi-layer neural networks, a resurgence!
a) Winner one of the most recent learning competitions

b) Automatic (unsupervised) learning of “cat” and “human face”
from 10 million of Google images; 16,000 cores 3 days; multi-
layer neural network (Stanford & Google).

¢) Speech recognition and real-time translation (Microsoft Research,
China).

Aside: see web site for great survey article
“A Few Useful Things to Know About

Machine Learning” by Domingos, CACM, 2012.
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Demo
Speech Translation

Start at min. 3:00. Deep Neural Nets in speech recognition.,
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Artificial Neural Networks

Mathematical abstraction!

13



We have: units, connected by links.
Each link has a weight.

The primary means for long-term storage. (plasticity)
Later: our learning algorithms will modify
these weights.

What about modifying the connectivity? (“rewiring” the
brain . ..).

Each unit has set of inputs links from other units
set of output links to other units and an
activation level.

A means to compute activation level at next time step.
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’I:'nz‘ = Z] Wj,iaj
a; — g(in;) = Q(Zj Wj,z‘aj)
g is the activation function:

step, sign, and sigmoid.

16



A a; A 4
+1 +1] p————————
- —-
t n; n;

(a) Step function

(b) Sign function
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(c) Sigmoid function
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a) step;(x) = 1, if x > t; otherwise 0

b) sign(z) = +1, if x > 0; otherwise —1

1
1+e—=

c) sigmoid(x) =

What might be the advantage of c¢?
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Aside: Can eliminate thresholds (it’s a trick):
create extra input aq fixed at —1.

a; = step (37— Wiaa;) = stepo(Xj_o Wijia;)

where Wy ; =t and a9 = —1.
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Can simulate Boolean gates!
(original motivation McCulloch and Pitts (1943).

What does this mean?
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Topics
Type of network structure.
Type of representations.

Type of learning algorithms (and applicability).

22



Network Structure

Main distinction: feed-forward vs. recurrent.

Feed-forward: no cycles. Activation flows one direction —
from input layer via “hidden” layers to output layer.

Extreme (unlikely) example: input layer — retina cells /
output layer — muscle control cells.

Next figure: two (three?) layers. Two input units / two hidde
units one output unit
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as = g(Wssas + Wys ay)
=g(Wss g(Wisar + Wasaz)+ Wy g(Wiga1 +Wayga})))
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Activation passed from input to output. Does network have
internal state? Corresponds to simple reactive agents.
Much used!. Good learning algorithms for
classification / concepts.
Brain cannot be just a feedforward network!
Need (need short-term memory)

Brain has many feed-back connections.
brain is recurrent network.
Cycles!

26



Hopfield Networks

Much harder to analyze. Can capture internal state.
(activation keeps going around) More complex agents.

Two main types:

Hopfield networks.

Boltzmann machines.
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Hopfield Networks

symmetric connections (W;; = W;;)
output 0/1 only.
train weights to obtain associative memory

eg. store patterns

It can be proven that an N unit Hopfiled net can
store up to 0.138 N patterns reliably.
Note: no explicit storage. All in the weights.
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Boltzmann machines

symmetric connections (W; ; = W ;)
output 0/1 only but network in constant motion:
compute average output value of each node.
stochastic

has nice (but slow) learning algorithm. also closely
connected to probabilistic reasoning

belief networks.

details beyond the scope of this course.
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Back to Feed-forward
input / output / hidden units.

perceptrons: no hidden units

multilayered
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Perceptron

Perceptron
— Invented by Frank Rosenblatt in 1957 in an
Cornell Aeronautical Laboratory attempt to understand human memory, learning,
i T and cognitive processes.
— The first neural network model by computation,
with a remarkable learning algorithm:

» If function can be represented by perceptron, the
learning algorithm is guaranteed to quickly
converge to the hidden function!

— Became the foundation of pattern recognition
research

One of the earliest and most influential neural networks:
Rosenblatt & An important milestone in Al

Mark I Perceptron:
the first machine that could
"learn" to recognize and
identify optical patterns.



Perceptrons

Remarkable learning algorithm: (Rosenblatt 1960)
if function can be represented by perceptron,

then learning algorithm is guaranteed to quickly converge
to the hidden function!

enormous popularity, early / mid 60’s

But analysis by Minsky and Papert (1969)
showed certain simple functions cannot be represented

(Boolean XOR)
Killed the field! (and possibly Rosenblatt (rumored)).
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Linearly separable functions only

(a) Separating plane (b) Weights and threshold
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Mid eighties: comeback — multilayed networks
(Turing machine compatible)
learning procedures: backpropagation

Possibly one of the most popular / widely used learning
methods today.

John Denker: “neural nets are the second best thing for
learning anything!” Update: or perhaps the best!

backprop and perceptron learning
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Representations

How are concepts represented in the brain / neural net?

local representations / grandmother cell
distributed representations

Pros / Cons?
distributed appeared to have won but
UCLA researchers showed (1997)
single cell can learn a concept! (concept: facial
expressions / a cell responding to “angry face”!)

37



e Neural Net Learning
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Perceptrons

Recap previous slides
Representational limit:
linearly separable functions only.
intuition? xor example.
xor with hidden layer.
connectedness example (Minsky/Papert)
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Perceptron Learning

A perceptron can learn any linearly separable function, given
enough enough training examples.

What does this say about linearly separable functions?
Key idea: adjust weights till all examples correct.

update weights repeatedly (epochs) for each example.
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weight update
Single output O; target output for example 7.

Define error:  Err=T — O
Now, just move weights in right direction!
If error is positive, then need to increase O.
Each input unit j contributes W; I; to total input.
if I; is positive, increasing W; tends to increase O

if I; is negative, decreasing W, tends to increase O

So, use:
W; — W, +ax1; x Err

Perceptron learning rule (Rosenblatt 1960). « is learning rat¢.
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Perceptrons

From Patrick Winston (MIT') book
Basic learning strategy for perceptron:
(simplified from R&N; e.g., learning rate = 1)
Framework and notation:
0/1 signals
input signal: )_f =< T1,T9,...,Tp, Tpiy >
weight vetor: I/?/ =< Wy, Wa, ..., Wy, Wpy1 >
Tp+1 = 1 with w,,; simulates threshold.

O is output signal (0 or 1) (single output)
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Threshold function of perceptron:

Let S = 7= wy, x oy,

If S>0then O=1,
else O = 0.
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We want to train the perceptron with a
set of examples.
Each example is given by an
a pair ( X 1),
i.e., an input vector with a label [ (0 or 1).
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Learning procedure for perceptron:
Called “the error correcting method”

Start with all zero weight vector.
Cycle (repeatedly) through examples and for
each example ( X , 1) do:
If perceptron gives wrong answer,
if output perceptron is 0 while it should be 1,
add the input vector to the weight vector.
if output perceptron is 1 while it should be 0,
subtract the input vector to the weight vector.
otherwise do nothing.
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Note that procedure is intuitively correct.
(e.g., if output is 0 but should be 1 the weights
are increased. )

The remarkable thing is that the procedure can
be proved to converge (in poly steps) if
the function can be represented by perceptron
(i.e. is linearly separable)
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Let’s do an example.
Consider learning the logical “or” function.

Our examples are:

sample x_1 X_2 x_3 1

Note: x 3 input fixed at 1 to model threshold.
Side benefit: no total 0 input.
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We'll use a single perceptron with three inputs
(1,2, x3) and single output (1).
Note artificial input x5 fixed at 1.
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We start with all weights at 0: < 0,0,0 >

Let’s consider the 1st example.
Perceptron with current weights classifies
sample 1 correctly as 0, so no change in weights.

Consider sample 2
Perceptron says 0 (note all weights still 0; S = 0)
should be 1, so we add input vector to weight vector
New weights: < 0,1,1 > (=< 0,0,0 >+ <0,1,1 >)
Note: standard addition and substraction. Weights can

take on arbitrary integer values.
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Consider sample 3
Classified correctly; do nothing. Consider sample 4
Classified correctly; do nothing. Consider sample 1
Perceptron says 1; should be 0.
Subtract input vector:
New weights: < 0,1,0 > (=< 0,1,1 > — <0,0,1 >)

The next slide shows the next couple of steps.
Please verify those for yourself.
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sample
sample

sample

sample

sample
sample
sample
sample

correctly classified
perceptron O; should be 1
new weights: <1, 1, 1>
correctly classified
perceptron 1; should be 0O
new weights: <1, 1, 0>
correctly classified
correctly classified
correctly classified
correctly classified
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So, the weight vector < 1,1,0 > classifies
all examples correctly, and the perceptron
has learned the function.
Aside: in more realistic cases the
weight ws will not be 0.
(This was just a toy example!)
Also, in general many more inputs (100 to 1000).

Always works, if inputs are linearly separable!
Single layer of units.

What about multi-layer NNs? No known
learning method until early 80s...
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Backpropagation

In order to learn multi-layer neural nets,
we need another learning algorithm.

(invented ca. 1984)
A multi-layer net has one or more hidden layers.

We will consider the backpropagation
algorithm for training such networks.
See also R&N. Here we will present a more
detailed example.
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Backpropagation
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Based on Nilsson (Stanford)

Note that in the perceptron case, we looked
at the output value, compared it to the desired
value and changed the weights accordingly.

We want to multi-layer

ase but one difficulty is to determine the
the outputs of the hidden uni
Luckily, we can approximate those errors by

err

“backpropagating” the final output error.
To do so, we need an activition function that
is differentiable.
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We use the sigmoid function to compute
our output values.

flz) = 1+1e—-’”

The derivative of f(z) is:

f'(z) = f(z) x (1 - f(z))
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0.8

0.6

0.4

0.2

Sigmoid s(2)
Derivative s'(z)

Weighted sum

Note: largest derivative at x = 0
That’s where neuron is most sensitive
to weight changes (effect of changes is
well “controlled”).

57



Output value of neuron is simply the
weighted sum of its input “pushed” through
the sigmoid.

f(s) = —, where

14+e—%?

. k=n-+1

Again, we assume the threshold is replaced
by an extra input fixed at 1. Inputs: 0 or 1.
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First layer J-th layer (k-1)-th layer k-th layer

0 1 f) (k-1)
(0) (1) l XU X

X X

m, sigmoids m; sigmoids mg_y, sigmoids

Figure 3.5

A k-layer Network of Sigmoid Units



Setup and notation:

k-layer network.
Input vector:

X0 =< azgo),a:go),...,a:g% >
The first layer has m units and its output is:

(1) — f(1) (1) 1
X()_<f1 ’f2 IR 1§nl)>
The weights for the ith unit in the first layer are

given by:
sz(l) =< wgz)a wgz)a s 7wr(71()),i >
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These outputs X! are fed into the
second layer of ms units.
The number of units in the j-th

layer is m;.

In general, the weight vector of unit ¢ in the j-th layer is W;.(j )
with components w{z for [ =1,mg_1) + 1.
Note that the previous layer had m(;_1) units
(and thus outputs) all connected to each unit in the
j-th layer. We use one additional weight and fixed input
to model the threshold. (Not given on previous slide.)
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The weighted sum of the inputs to i-th sigmoid unit

in the j-th layer is denoted by s\’

1
The output is ) = =—

1+e i

We have:
s :X(?‘l) . HRJ')

We used the vector dot product, i.e.,

(.7) z ;n(J—l)'*'l (G-1) ,wl(JJ)
(J— )

is the output of unit / in the

previous layer. It’s connected with weight w(] )

to the i-th unit in the j-th layer.
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Note: again, concerning the “+1” here, we assume that an
extra “1” is added to the input vector and an extra
weight, to model the threshold.

Finally, the k-th layer is the output layer.
It has a single unit with input s (weighted
sum) and output value f*) = f.
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The objective of the backprogation algorithm is

to minimize the output error on each example.

That is, we want to minimize:

(L —f)?

Where, L the label (0 or 1) of the input example
under consideration and f is the output of the
network given that example.

Note: we will update the weights after each example

rnative approach considers the combin

rror over the total training set and update after

les. In the limit the a are the same.
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A key observation is that the error (L — f)? is
only a function of the weights.
Note: the number of units etc. is fixed.
Also, the inputs are fixed, since we are considering
a particular example.

The idea is now to do a gradient descent in the
weight space to minimize the error.

The derivation (basically calculus) is somewhat

involved but not difficult.

It’s “just” multivariate (or multivariable) calculus.
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Here we just give the results of the calculation.

First, the weight adjustment for the single unit

in the output layer is given by:

WE—W® L ax(d—f) x fx(1—f)x X&ED

Note: f is the output of the unit; d is desired output.

This rule is analogous to the perceptron rule, except
that we are now using the sigmoid.

The (d — f) is the error signal.

« is the learning rate (a constant chosen by the user).

f x (1 — f) comes from the derivative of the sigmoid.

X *=1) is the input to the unit under consideration.
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So, again we're adding (subtracting) the input vector,
depending on (d — f).

Please check for yourself that the correction is
in the right direction!

We're basically going to do something similar
for the weights in the hidden layer. The only problem
is that we don’t have a direct measure of the error

in the outputs on the hidden units.
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Starting with the final layer and moving backwards,
we compute for the i-th unit in the j-th layer:

5i(j) _ fzJ( fJ) a1 5(J+1) z(Jl+1)

Note that fz-(J ) is the output value of the unit.
So, the ¢ for a unit in the i-th layer is
computed by considering the delta in the 7 + 1-th layer.

The base case is the output layer k&:

.

I.e., the real output error times the gradient.

This values is propagated backwards

for the internal units (times the gradient again).
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Finally, using these 4’s, we can compute the
weight updates for the hidden units:
G),_ ) iy pU Y
W — W 4+a x ] x X
Verify that this rule is consistent with the

update rule for the final node. (Check j = k;
drop %, since only one unit in layer.)

So, first we “backpropagate” the error
signal, and then we update the weights, layer
by layer.

That’s why it’s called “backprop learning.”
Now changing speech recognition, image
recognition etc.!
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Although, the rules are somewhat intuitive, only
by doing the full derivation, can one explain
all the terms.

Let us consider an example of the procedure
In action.
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Trace example at home!

X1

/
Figure 3.6 /™
A —
A Network to
Be Trained by
Backprop x3=1

71



We have two layers (k = 2).
Two units in first layer, with a total

of three inputs (:1:&0), a:go), :1::(30)).

z{") will be fixed to 1.
The two units in the first layer are connected

to a node in the final layer. This node

has three inputs: (azgl), a:gl), asgl)).
:cgl) is the output of the 1st unit in the 1st layer.
a:gl) is the output of the 2nd unit in the 2nd layer.
a:f(;l) is fixed at 1.

Note the given weights in the figure.

72



We want to train the network to capture the
following patterns:

ex1) z” =128 =0,2z{ =1,d=0
ex2) z” =0,z =0,z =1,d =1
ex 3.) 2\ =0, :1:(0)—1 ) =1,d=0
ex 4.) :1:()—1 :z:(o)—l x(o)zl,dzl

Again, d is the desired output; a:( ) is the fixed unit.

Let’s consider the update after the first pattern.
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Ex 1.) gives input vector < 1,0,1 >, which leads via
the sigmoid to the following output values:

1

1; ; = L, =0.881
1 1

2 — 1+e_0 — 0.5

_ 1 -
f - 1+e—(3x0.881+(—2)x0.5_1) — 0665
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We now compute the values for the d’s.
First the base case:

62 = (0 — 0.665) x 0.665 x (1 —0.665) = —0.148
Backpropagating through the weights gives:

oY = 0.881 x (1 — 0.881) x (—0.148 x 3) = —0.047
057 = 0.5 x (1 —0.5) x (—0.148 x —2) = 0.074

Double-check at least one of these!
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After computing the é’s, we can now update the weights.
(Use learning rate @ = 1.) We get for the new weights:

W=« 1.953, —2.0, —0.047 >
WiV =< 1.074, 3.0, —0.926 >
W@ =< 2.870, —2.074, —1.148 >
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Aside: the original weights were:
W =< 2.0.-2.0.0.0 >

W, =< 1.0.3.0.-1.0 >

W =< 3.0,-2.0,—1.0 >
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Let’s do an example calculation of the first weight vector.
— (1)
W7 =< 1.953,-2.0,—-0.047 >

wi] = wif + (1 x 6} x z1”)
— 2+ (1 x (—0.047) x 1) = 1.953

w§12) — w§12) + (1 x 6] x 3 ))
—2 4+ (1 x (—0.047) x 0) = —2.0

§§+(1x51xx3))
=04 (1 x (—0.047) x 1) = —0.047

o
||
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Let’s do the calculation of the third weight vector.

W(2)=< 2.870, —2.074, —1.148 > v = w{? 1+ (1 x 82 x z{")

=3+ (1 x (—0.148) x 0.881)
= 2.870

wg) _w2 —|—(1 X &2 xa:2))
= —2+ (1 x (—0.148) x 0.5)
= —2.074

w§2)—w3)—|—(1x52xx3))
— 1+ (1 x (—0.148) x 1)
= —1.148
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A tour of Al:

I) Al
--- motivation
--- intelligent agents

II) Problem-Solving
--- search techniques
--- adversarial search

--- constraint satisfaction

Summary ©
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Summary, cont. ©

III) Knowledge Representation and Reasoning
--- logical agents
--- first-order logic and inference

V) Learning
--- from examples
--- decision tree learning (info gain)
--—- PAC learning

--- neural networks

The field has grown (and continues to grow) exponentially but you
have now seen a good part!

Have a great winter break!!!!
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