User Interaction

CS 465 lecture 21

Cornell CS465 Fall 2006 • Lecture 6 © 2006 Steve Marschner • I

User Interaction

- Input devices
- User-centered design
- · GUIs and GUI design
- Interaction with 2D and 3D scenes

Cornell CS465 Fall 2006 • Lecture 6 © 2006 Steve Marschner • 2

Input devices

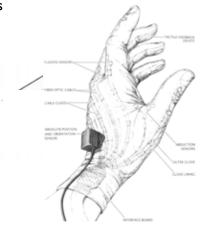
- Discrete events
 - Keyboard
 - Function keys
 - Mouse buttons
 - Game controller buttons
 - · Including multi-way controllers (pseudo-joysticks)
- Valuators: generate continuous values
 - Rotary knobs (relative or absolute)
 - · Recentering or free
 - Joysticks (two valuators in one)

Input devices

- Locators: give a continuous 2D position
 - Mechanical mouse (trackball is the same)
 - · Two axes with optical encoders
 - Integrate rate of pulses on each axis
 - Result = position
 - Optical mouse
 - Image sensor looking out the bottom
 - Shift and correlate to estimate motion per frame
 - Integrate motion to get position
 - Mouse velocity scaling

Cornell CS465 Fall 2006 • Lecture 6 © 2006 Steve Marschner • 3 Cornell CS465 Fall 2006 • Lecture 6 © 2006 Steve Marschner • 4

Input devices


- Locators, cont.
 - Pen tablet
 - · Directly senses absolute stylus position
 - · Often used directly over a display
 - PDA
 - Tablet PC
 - Absolute vs. relative
 - Direct vs. indirect

Cornell CS465 Fall 2006 • Lecture 6 © 2006 Steve Marschner • 5

Input devices

Multidimensional controllers

- More exotic devices
- Spaceball
- Data glove
- 3D tracker
 - Magnetic
 - Acoustic
 - Optical

Cornell CS465 Fall 2006 • Lecture 6 © 2006 Steve Marschner • 6

User-centered design

- Usability is an often undervalued objective in the design of devices
- Computers and computerized devices are some of the worst offenders!
- This section based heavily on the classic book by Donald Norman, The Design of Everyday Things

User-centered design

- We are often frustrated by the artifacts we build to work for us
 - door handles, water faucets, ...
 - stereos, microwaves, ...
 - airplanes, industrial equipment, ...
 - computers (always!)
- ...and we blame ourselves
 - I'm so dumb, I always push the pull door
 - I would need an engineering degree to figure this thing out!
 - The accident was caused by pilot error
- If we work at it, we can avoid many of these problems!

Cornell CS465 Fall 2006 • Lecture 6 © 2006 Steve Marschner • 7 Cornell CS46

Cornell CS465 Fall 2006 • Lecture 6 © 2006 Steve Marschner • 8

Psychopathology of everyday things

- (Norman's phrase)
- Sometimes the interaction between a device and human behavior defeats the device's purpose
- Best explored by examples

Cornell CS465 Fall 2006 • Lecture 6 © 2006 Steve Marschner • 9

Doors: push or pull?

Cornell CS465 Fall 2006 • Lecture 6 © 2006 Steve Marschner • 10

Doors: push or pull?

Cornell CS465 Fall 2006 • Lecture 6 © 2006 Steve Marschner • 11

Ovens

© 2006 Steve Marschner • 12

- Two devices with the same basic function
 - one computer controlled, one not
 - one universally hated UI, one perfectly functional

Cornell CS465 Fall 2006 • Lecture 6

Cameras

Cornell CS465 Fall 2006 • Lecture 6 © 2006 Steve Marschner • 13

Concepts of user-centered design

- Affordances
 - objects indicate by their appearance how they can be used
- Mappings
 - when several controls, directions, etc. exist, which is which?
- Conceptual models
 - don't mislead the user about what is inside
- · Visibility and feedback
 - let the user see what is going on
- · Knowledge in the head vs. in the world
 - well-chosen cues help the user remember what to do
- Conventions
 - when all else fails, make the user memorize once

Cornell CS465 Fall 2006 • Lecture 6

© 2006 Steve Marschner • 14

Affordances

• Which turn, which slide, which push?

Cornell CS465 Fall 2006 • Lecture 6 © 2006 Steve Marschner • 15

Affordances

• The big jog/shuttle knob has some hidden meanings...

Cornell CS465 Fall 2006 • Lecture 6

© 2006 Steve Marschner • 16

Mappings

Which control is for which burner?

[rrigidalre

Cornell CS465 Fall 2006 • Lecture 6

© 2006 Steve Marschner • 17

Mappings

- Lighting controls: which switch controls what light(s)?
 - what lights are even being controlled? Which operate independently?

Cornell CS465 Fall 2006 • Lecture 6

© 2006 Steve Marschner • 18

Mappings

Cornell CS465 Fall 2006 • Lecture 6

© 2006 Steve Marschner • 19

Mappings

Cornell CS465 Fall 2006 • Lecture 6

© 2006 Steve Marschner • 20

Conceptual models

- Norman's example: refrigerator adjustments
 - appearance: separate controls for fridge and freezer
 - reality: one cooling system, one thermostat (second control is for cold air distribution)
- My example: Microsoft word 1989 vs 2006
 - version 4: paragraph attributes associated with "paragraph mark"
 - · this did lead to some surprising behavior
 - version 2004: same underlying model, but layers of "helpful" behaviors prevent users from discovering it

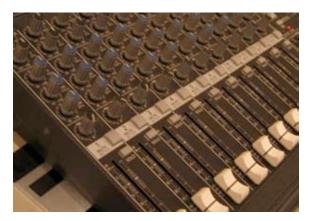
Cornell CS465 Fall 2006 • Lecture 6

© 2006 Steve Marschner • 21

Visibility and feedback

- Buttons that light up when they are on can reveal state
 - and with a nice built-in mapping back to the control

· Faucet handles again...


Cornell CS465 Fall 2006 • Lecture 6

© 2006 Steve Marschner • 22

Knowledge in the world

• Brief, well-designed markings

Cornell CS465 Fall 2006 • Lecture 6 © 2006 Steve Marschner • 23

Standardization

- The QWERTY keyboard
 - cost to transition to a mildly better system is high
- · Complex designs that are not new are not as hard

Cornell CS465 Fall 2006 • Lecture 6

© 2006 Steve Marschner • 24

Graphical User Interfaces (GUIs)

- Using visual display coupled with pointing to present complex choices to the user
- The dominant mode of user interface today
- · Many flavors exist, but all present similar widgets
 - Icons (objects)
 - Buttons (actions)
 - Menus (collections of choices/actions)
 - Lists
 - Trees
- All the same principles apply as for physical Uls
 - only you have to create everything: affordances, visible state, etc. don't happen naturally.

Cornell CS465 Fall 2006 • Lecture 6 © 2006 Steve Marschner • 25

Affordances

- Pressing
 - often suggested by raised appearance

- · Sliding, adjustment
 - often suggested by track

· Active vs. inactive

Cornell CS465 Fall 2006 • Lecture 6 © 2006 Steve Marschner • 26

Lack of affordance

• Web links (often)

- how do I know what I can click on?
- Window controls
 - I can grab this window anywhere to move it. How do I know this?

Mapping

- Scroll bars: horizontal and vertical
- Software often has very arbitrary mappings

Cornell CS465 Fall 2006 • Lecture 6

© 2006 Steve Marschner • 28

Cornell CS465 Fall 2006 • Lecture 6

Other features

- Feedback
 - during control operation
 - revealing control state
- · Conceptual models
 - a higher level question...
- · Knowledge in the world
 - drop-down menus are a nice example
 - contrast to keyboard commands that you have to just know

Cornell CS465 Fall 2006 • Lecture 6 © 2006 Steve Marschner • 29

Times | Substitute | Park | P

Basic interaction tasks

- Positioning
- Selection
 - From large/continuous set (part of image)
 - Rectangle, lasso
 - From unorganized discrete set (icons on desktop)
 - Click and modifier-click, or drag area
 - From linearly organized set
 - Selection from list box
 - From hierarchically organized set
 - Drop-down menus, trees, columnar lists, ...

Cornell CS465 Fall 2006 • Lecture 6 © 2006 Steve Marschner • 30