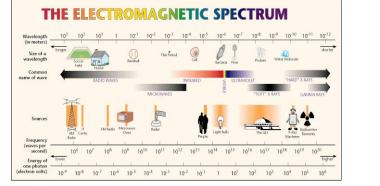
Color Science

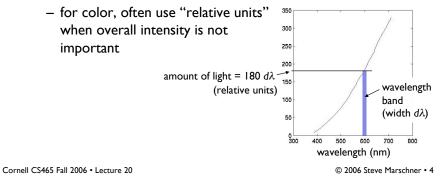

CS 465 Lecture 20

Cornell CS465 Fall 2006 • Lecture 20

© 2006 Steve Marschner • I

What light is

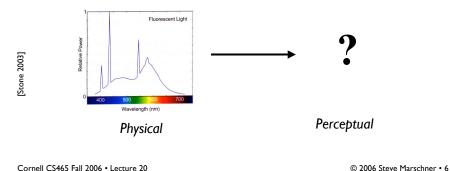
- Light is electromagnetic radiation
 - exists as oscillations of different frequency (or, wavelength)


Cornell CS465 Fall 2006 • Lecture 20

© 2006	Steve	Marschner	•	3

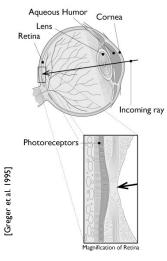
[Lawrence Berkeley Lab / MicroWorlds]

- Salient property is the spectral power distribution (SPD)
 - the amount of light present at each wavelength
 - units: Watts per nanometer (tells you how much power you'll find in a narrow range of wavelengths)



What color is

- Colors are the sensations that arise from light energy of different wavelengths
 - we are sensitive from about 380 to 760 nm—one "octave"
- Color is a phenomenon of human perception; it is **not** a universal property of light
- Roughly speaking, things appear "colored" when they depend on wavelength and "gray" when they do not.

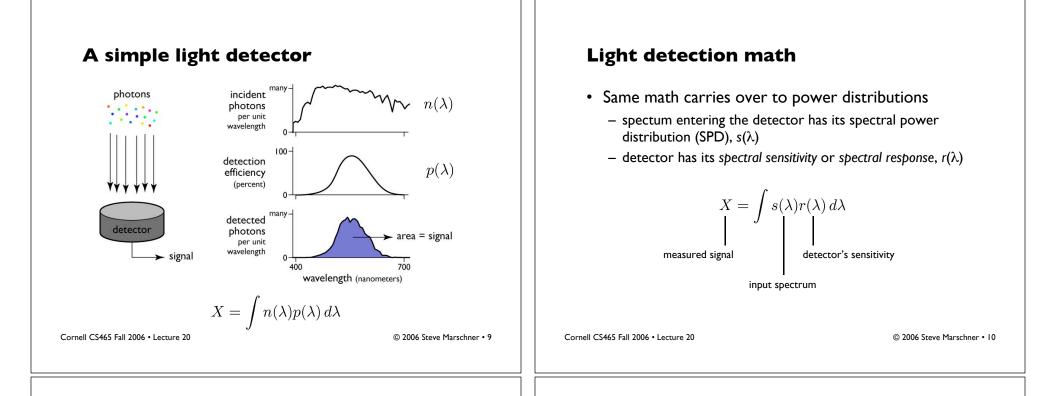

The problem of color science

- Build a model for human color perception
- That is, map a Physical light description to a Perceptual color sensation


```
Cornell CS465 Fall 2006 • Lecture 20 © 2006 Steve Marschner • 5
```

The eye as a measurement device

• We can model the low-level behavior of the eye by thinking of it as a light-measuring machine


- its optics are much like a camera
- its detection mechanism is also much like a camera
- Light is measured by the photoreceptors in the retina
 - they respond to visible light
 - different types respond to different wavelengths

A simple light detector

- Produces a scalar value (a number) when photons land on it
 - this value depends strictly on the number of photons detected
 - each photon has a probability of being detected that depends on the wavelength
 - there is no way to tell the difference between signals caused by light of different wavelengths: there is just a number
- This model works for many detectors:
 - based on semiconductors (such as in a digital camera)
 - based on visual photopigments (such as in human eyes)

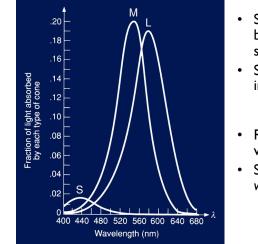
© 2006 Steve Marschner • 8

Cornell CS465 Fall 2006 • Lecture 20

Light detection math

$$X = \int s(\lambda) r(\lambda) \, d\lambda \qquad \text{or} \qquad X = s \cdot r$$

- If we think of s and r as vectors, this operation is a dot product (aka inner product)
 - in fact, the computation is done exactly this way, using sampled representations of the spectra.
 - let λ_i be regularly spaced sample points $\Delta \lambda$ apart; then:


$$\tilde{s}[i] = s(\lambda_i); \tilde{r}[i] = r(\lambda_i)$$

$$\int s(\lambda) r(\lambda) \, d\lambda \approx \sum_i \tilde{s}[i] \tilde{r}[i] \, \Delta \lambda$$

• this sum is very clearly a dot product

© 2006 Steve Marschner • I I

Cone Responses

Cornell CS465 Fall 2006 • Lecture 20

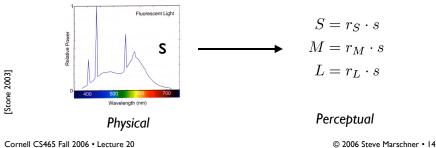
- S,M,L cones have broadband spectral sensitivity
- S,M,L neural response is integrated w.r.t. $\boldsymbol{\lambda}$
 - we'll call the response functions r_S, r_M, r_L
- Results in a trichromatic visual system
- S, M, and L are tristimulus values

[[]source unknown]

Cone responses to a spectrum s

$$S = \int r_S(\lambda)s(\lambda) \, d\lambda = r_S \cdot s$$
$$M = \int r_M(\lambda)s(\lambda) \, d\lambda = r_M \cdot s$$
$$L = \int r_L(\lambda)s(\lambda) \, d\lambda = r_L \cdot s$$

Cornell CS465 Fall 2006 • Lecture 20


© 2006 Steve Marschner • 13

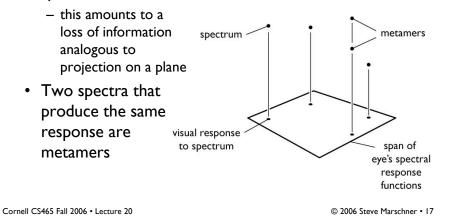
Basic fact of colorimetry

- Take a spectrum (which is a function)
- Eye produces three numbers
- This throws away a lot of information!
 - Quite possible to have two different spectra that have the same S, M, L tristimulus values
 - Two such spectra are metamers

Colorimetry: an answer to the problem

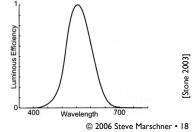
- Wanted to map a Physical light description to a Perceptual color sensation
- Basic solution was known and standardized by 1930 - Though not quite in this form-more on that in a bit

© 2006 Steve Marschner • 14


Pseudo-geometric interpretation

- A dot product is a projection
- We are projecting a high dimensional vector (a spectrum) onto three vectors
 - differences that are perpendicular to all 3 vectors are not detectable
- For intuition, we can imagine a 3D analog
 - 3D stands in for high-D vectors
 - 2D stands in for 3D
 - Then vision is just projection onto a plane

Cornell CS465 Fall 2006 • Lecture 20


Pseudo-geometric interpretation

• The information available to the visual system about a spectrum is three values

Basic colorimetric concepts

- Luminance
 - the overall magnitude of the the visual response to a spectrum (independent of its color)
 - corresponds to the everyday concept "brightness"
 - determined by product of SPD with the luminous efficiency function V_{λ} that describes the eye's overall ability to detect light at each wavelength
 - e.g. lamps are optimized to improve their luminous efficiency (tungsten vs. fluorescent vs. sodium vapor)


```
Cornell CS465 Fall 2006 • Lecture 20
```

Luminance, mathematically

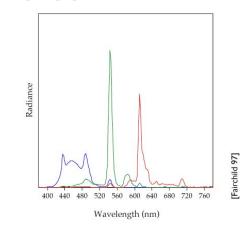
• Y just has another response curve (like S, M, and L)

 $Y = r_Y \cdot s$

- $r_{\rm Y}$ is really called " V_{λ} "
- V_{λ} is a linear combination of S, M, and L
 - Has to be, since it's derived from cone outputs

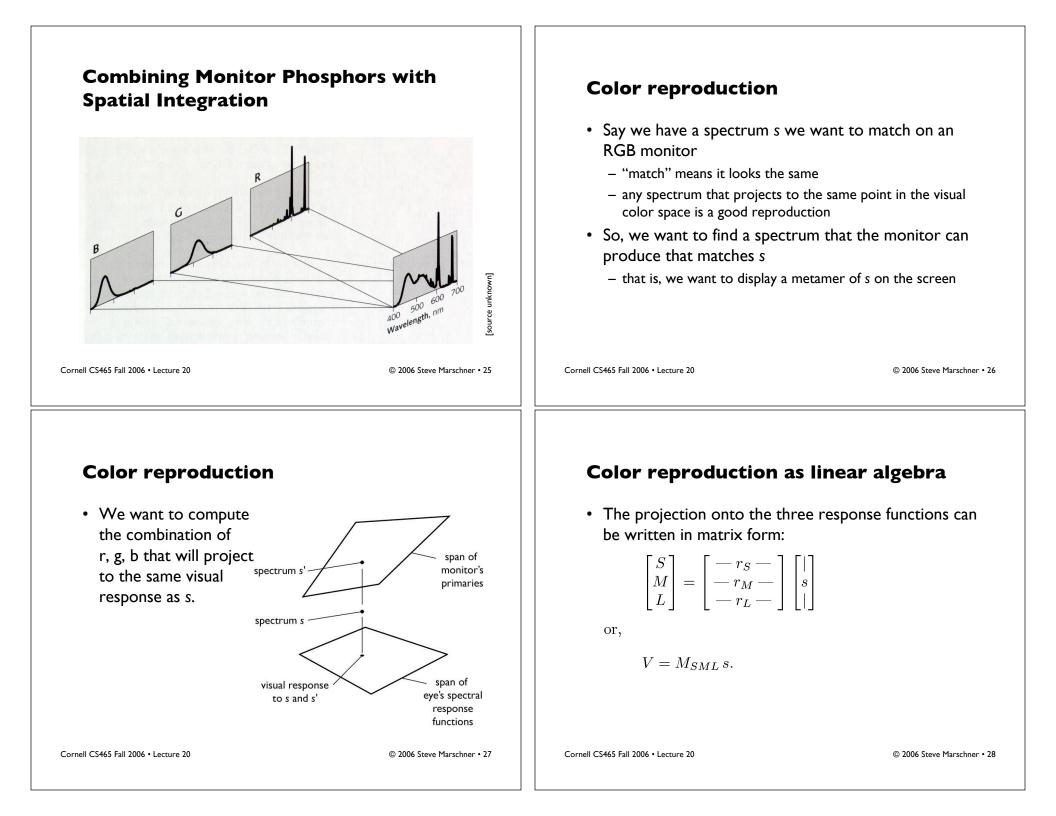

More basic colorimetric concepts

- Chromaticity
 - what's left after luminance is factored out (the color without regard for overall brightness)
 - scaling a spectrum up or down leaves chromaticity alone
- Dominant wavelength
 - many colors can be matched by white plus a spectral color
 - correlates to everyday concept "hue"
- Purity
 - ratio of pure color to white in matching mixture
 - correlates to everyday concept "colorfulness" or "saturation"


© 2006 Steve Marschner • 19

Cornell CS465 Fall 2006 • Lecture 20

Color reproduction Additive Color • Have a spectrum s; want to match on RGB monitor - "match" means it looks the same - any spectrum that projects to the same point in the visual color space is a good reproduction • Must find a spectrum that the monitor can produce that is a metamer of s [cs417—Greenberg] [source unknown] R, G, B? Cornell CS465 Fall 2006 • Lecture 20 © 2006 Steve Marschner • 21 Cornell CS465 Fall 2006 • Lecture 20 © 2006 Steve Marschner • 22



LCD display primaries

- Curves determined by (fluorescent) backlight and filters

Cornell CS465 Fall 2006 • Lecture 20

Color reproduction as linear algebra

• The spectrum that is produced by the monitor for the color signals R, G, and B is:

 $s_a(\lambda) = Rs_r(\lambda) + Gs_g(\lambda) + Bs_b(\lambda).$

• Again the discrete form can be written as a matrix:

$$\begin{bmatrix} | \\ s_a \\ | \end{bmatrix} = \begin{bmatrix} | & | & | \\ s_R & s_G & s_B \\ | & | & | \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix} =$$

or,

 $s_a = M_{RGB} C.$

Cornell CS465 Fall 2006 • Lecture 20

Color reproduction as linear algebra

• Goal of reproduction: visual response to s and s_a is the same:

© 2006 Steve Marschner • 29

© 2006 Steve Marschner • 31

$$M_{SML}\,\tilde{s} = M_{SML}\,\tilde{s_a}.$$

• Substituting in the expression for s_{σ}

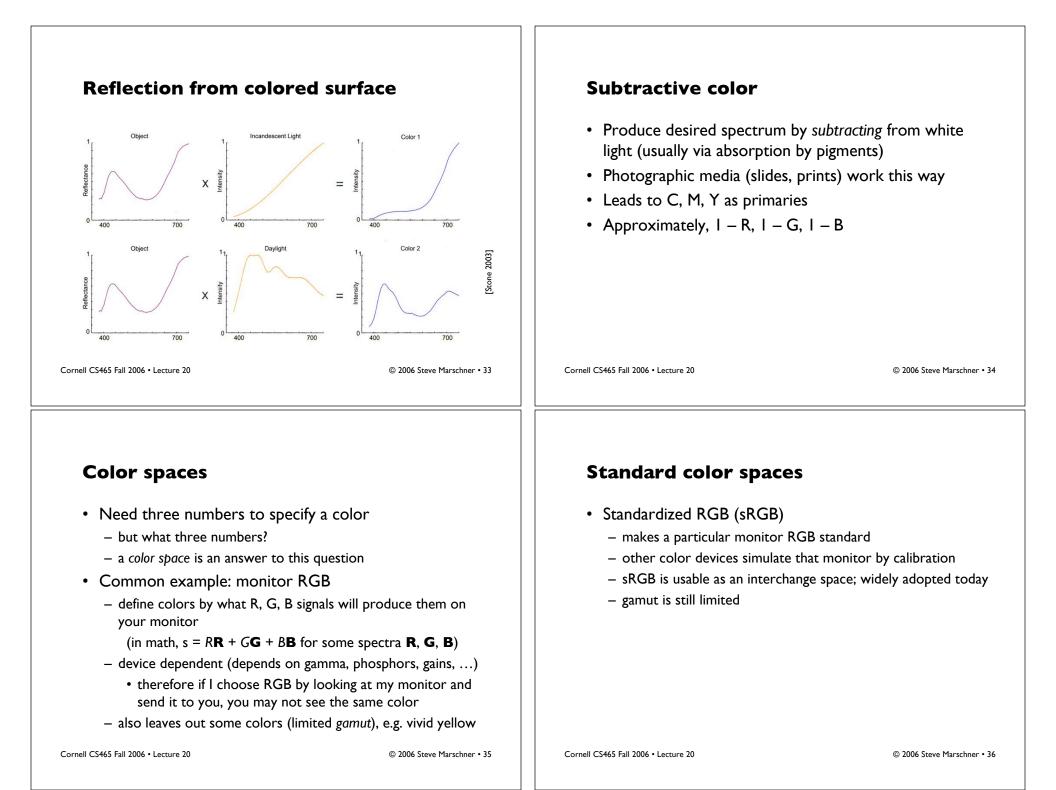
$$M_{SML}\,\tilde{s} = M_{SML}M_{RGB}\,C$$
$$C = (M_{SML}M_{RGB})^{-1}M_{SML}\,\tilde{s}$$

color matching matrix for RGB

Color reproduction as linear algebra

- What color do we see when we look at the display?
 - Feed C to display
 - Display produces s_a
 - Eye looks at s_a and produces V

$$V = M_{SML}M_{RGB}C$$

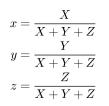

$$\begin{bmatrix} S\\ M\\ L \end{bmatrix} = \begin{bmatrix} r_S \cdot s_R & r_S \cdot s_G & r_S \cdot s_B\\ r_M \cdot s_R & r_M \cdot s_G & r_M \cdot s_B\\ r_L \cdot s_R & r_L \cdot s_G & r_L \cdot s_B \end{bmatrix} \begin{bmatrix} R\\ G\\ B \end{bmatrix}$$

Cornell CS465 Fall 2006 • Lecture 20

© 2006 Steve Marschner • 30

Subtractive Color

A universal color space: XYZ

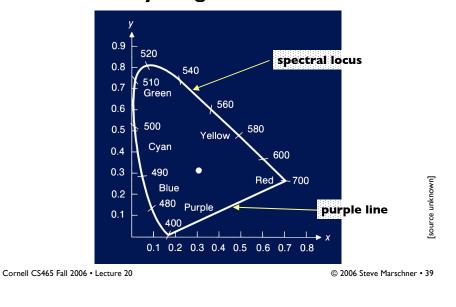

- Standardized by CIE (Commission Internationale de l'Eclairage, the standards organization for color science)
- Based on three "imaginary" primaries X, Y, and Z (in math, s = XX + YY + ZZ)
 - imaginary = only realizable by spectra that are negative at some wavelengths
 - key properties
 - any stimulus can be matched with positive X, Y, and Z
 - separates out luminance: \mathbf{X}, \mathbf{Z} have zero luminance, so Y tells you the luminance by itself

Cornell CS465 Fall 2006 • Lecture 20

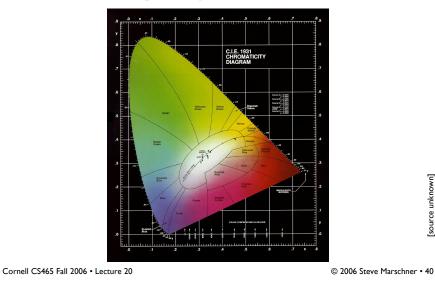
© 2006 Steve Marschner • 37

Separating luminance, chromaticity

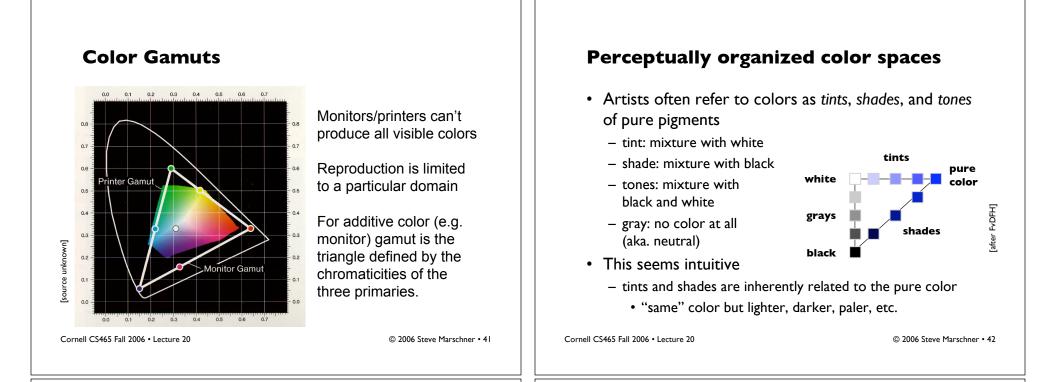
- Luminance: Y
- Chromaticity: x, y, z, defined as



- since x + y + z = 1, we only need to record two of the three
 - usually choose x and y, leading to (x, y, Y) coords


Cornell CS465 Fall 2006 • Lecture 20

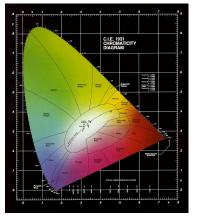
© 2006 Steve Marschner • 38


Chromaticity Diagram

Chromaticity Diagram

[source unknown]

Perceptual dimensions of color


- Hue
 - the "kind" of color, regardless of attributes
 - colorimetric correlate: dominant wavelength
 - artist's correlate: the chosen pigment color
- Saturation
 - the "colorfulness"
 - colorimetric correlate: purity
 - artist's correlate: fraction of paint from the colored tube
- Lightness (or value)
 - the overall amount of light
 - colorimetric correlate: luminance
 - artist's correlate: tints are lighter, shades are darker

Cornell CS465 Fall 2006 • Lecture 20

© 2006 Steve Marschner • 43

Perceptual dimensions: chromaticity

- In x, y, Y (or another luminance/chromaticity space), Y corresponds to lightness
- hue and saturation are then like polar coordinates for chromaticity (starting at white, which way did you go and how far?)

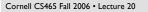
Cornell CS465 Fall 2006 • Lecture 20

Perceptual dimensions of color

- There's good evidence ("opponent color theory") for a neurological basis for these dimensions
 - the brain seems to encode color early on using three axes:
 white black, red green, yellow blue
 - the white—black axis is lightness; the others determine hue and saturation
 - one piece of evidence: you can have a light green, a dark green, a yellow-green, or a blue-green, but you can't have a reddish green (just doesn't make sense)
 - thus red is the opponent to green
 - another piece of evidence: afterimages (next slide)

Cornell CS465 Fall 2006 • Lecture 20

© 2006 Steve Marschner • 45



RGB as a 3D space

• A cube:

(demo of RGB cube)

Cornell CS465 Fall 2006 • Lecture 20

Perceptual organization for RGB: HSV

• Uses hue (an angle, 0 to 360), saturation (0 to 1), and value (0 to 1) as the three coordinates for a color

120°

Green

- the brightest available RGB colors are those with one of R,G,B equal to I (top surface)
- equal to I (top surface) Cyan - each horizontal slice is the surface of a sub-cube of the RGB cube

(demo of HSV color pickers)

Cornell CS465 Fall 2006 • Lecture 20

© 2006 Steve Marschner • 49

H

Red 0°

[FVDFH]

Yellow

Magent

1.0 White

Black

Perceptually uniform spaces

- Two major spaces standardized by CIE
 - designed so that equal differences in coordinates produce equally visible differences in color
 - LUV: earlier, simpler space; L*, u*, v*
 - LAB: more complex but more uniform: L^* , a^* , b^*
 - both separate luminance from chromaticity
 - including a gamma-like nonlinear component is important

Cornell CS465 Fall 2006 • Lecture 20