

Scaling

Cornell CS465 Fall 2006 • Lecture 6

© 2006 Steve Marschner • 3

Rotation about z axis

$\begin{bmatrix} x' \end{bmatrix}$	$\cos\theta$	$-\sin \theta$	0	0	$\begin{bmatrix} x \end{bmatrix}$
y'	$\sin heta$	$\cos heta$	0	0	y
z' =	0	0	1	0	z
1	0	0	0	1	$\lfloor 1 \rfloor$

Cornell CS465 Fall 2006 • Lecture 6

© 2006 Steve Marschner • 4

Building general rotations

- Alternative: construct frame and change coordinates
 - choose p, u, v, w to be orthonormal frame with p and u matching the rotation axis
 - apply similarity transform $T = F R_x(\theta) F^{-1}$
 - interpretation: move to x axis, rotate, move back
 - interpretation: rewrite *u*-axis rotation in new coordinates
 - (each is equally valid)

Transforming normal vectors

- Transforming surface normals
 - differences of points (and therefore tangents) transform OK
 - normals do not

have: $\mathbf{t} \cdot \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$ want: $M\mathbf{t} \cdot X\mathbf{n} = \mathbf{t}^T M^T X\mathbf{n} = 0$ so set $X = (M^T)^{-1}$ then: $M\mathbf{t} \cdot X\mathbf{n} = \mathbf{t}^T M^T (M^T)^{-1} \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$

Cornell CS465 Fall 2006 • Lecture 6

© 2006 Steve Marschner • 13

Cornell CS465 Fall 2006 • Lecture 6

© 2006 Steve Marschner • 14