3D Transformations

CS 465 Lecture 9

Scaling

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Translation

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lllc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Rotation about z axis

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Rotation about x axis

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

General rotations

- A rotation in 2D is around a point
- A rotation in 3D is around an axis
- so 3D rotation is w.r.t a line, not just a point
- there are many more 3D rotations than 2D
- a 3D space around a given point, not just ID

Rotation about y axis

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Specifying rotations

- In 2D, a rotation just has an angle
- if it's about a particular center, it's a point and angle
- In 3D, specifying a rotation is more complex
- basic rotation about origin: unit vector (axis) and angle
- convention: positive rotation is CCW when vector is pointing at you
- about different center: point (center), unit vector, and angle
- this is redundant: think of a second point on the same axis...
- Alternative: Euler angles
- stack up three coord axis rotations

Coming up with the matrix

- Showed matrices for coordinate axis rotations
- but what if we want rotation about some random axis?
- Compute by composing elementary transforms
- transform rotation axis to align with x axis
- apply rotation
- inverse transform back into position
- Just as in 2D this can be interpreted as a similarity transform

Orthonormal frames in 3D

- Useful tools for constructing transformations
- Recall rigid motions
- affine transforms with pure rotation
- columns (and rows) form right handed ONB
- that is, an orthonormal basis

$$
F=\left[\begin{array}{cccc}
\mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{p} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Building general rotations

- Alternative: construct frame and change coordinates
- choose p, u, v, w to be orthonormal frame with p and u matching the rotation axis
- apply similarity transform $T=F R_{x}(\theta) F^{-1}$
- interpretation: move to x axis, rotate, move back
- interpretation: rewrite u-axis rotation in new coordinates
- (each is equally valid)

Transforming normal vectors

- Transforming surface normals
- differences of points (and therefore tangents) transform OK
- normals do not

have: $\mathbf{t} \cdot \mathbf{n}=\mathbf{t}^{T} \mathbf{n}=0$
want: $M \mathbf{t} \cdot X \mathbf{n}=\mathbf{t}^{T} M^{T} X \mathbf{n}=0$
so set $X=\left(M^{T}\right)^{-1}$
then: $M \mathbf{t} \cdot X \mathbf{n}=\mathbf{t}^{T} M^{T}\left(M^{T}\right)^{-1} \mathbf{n}=\mathbf{t}^{T} \mathbf{n}=0$

