

Cornell CS465 Spring 2006 • Lecture 5

© 2006 Steve Marschner • 7

Basics of local lighting Shading: diffuse reflection Diffuse reflection · Assume light reflects equally in all directions - light goes everywhere - therefore surface looks same color from all views: "view independent" - colored by object color • Illumination on an oblique surface is less than Specular reflection on a normal one - happens only near mirror configurations - needs to be spread out some for point lights - usually white (except colored metals: e.g. copper, gold) Ambient reflection - don't worry about where light comes from – generally: illumination falls off as $\cos \theta$ - just add a constant amount of light to account for other sources of illumination Cornell CS465 Spring 2006 • Lecture 5 © 2006 Steve Marschner • 9 Cornell CS465 Fall 2004 • Lecture 3 © 2004 Steve Marschner • 10

Diffuse reflection

- · Light is scattered uniformly in all directions - the surface color is the same for all viewing directions
- Lambert's cosine law

amount of light intercepts half the light

Cornell CS465 Spring 2006 • Lecture 5

In general, light per unit area is proportional to $\cos \theta = L \cdot N$

© 2006 Steve Marschner • 11

Lambertian shading

· Shading independent of view direction

<section-header><section-header><section-header><section-header><section-header><section-header><image/><page-footer></page-footer></section-header></section-header></section-header></section-header></section-header></section-header>	<section-header><section-header><section-header><section-header><list-item><list-item><list-item><equation-block><equation-block><text></text></equation-block></equation-block></list-item></list-item></list-item></section-header></section-header></section-header></section-header>
Putting it together • Usually include ambient, diffuse, Phong in one model $L = L_a + L_d + L_s$ $= k_a I_a + I (k_d \max(0, \mathbf{n} \cdot \mathbf{v}_L) + k_s \max(0, \mathbf{n} \cdot \mathbf{v}_H)^n)$ • The final result is the sum over many lights $L = L_a + \sum_i (L_d)_i + (L_s)_i$ $= k_a I_a + \sum_i I_i (k_d \max(0, \mathbf{n} \cdot (\mathbf{v}_L)_i) + k_s \max(0, \mathbf{n} \cdot (\mathbf{v}_H)_i)^n)$	 Mirror reflection Consider perfectly shiny surface there isn't a highlight instead there's a reflection of other objects Can render this using recursive ray tracing to find out mirror reflection color, ask what color is seen from surface point in reflection direction already computing reflection direction for Phong "Glazed" surface has mirror reflection and diffuse L = L_a + L_d + L_m
<i>i</i> Cornell CS465 Spring 2006 • Lecture 5 © 2006 Steve Marschner • 23	- where L_m is evaluated by tracing a new ray Cornell CS465 Spring 2006 • Lecture 5 © 2006 Steve Marschner • 24

Diffuse + mirror reflection (glazed)

Cornell CS465 Spring 2006 • Lecture 5

© 2006 Steve Marschner • 25