

Plane projection in photography

- This is another model for what we are doing
- applies more directly in realistic rendering

Vector math review

- Vectors and points
- Vector operations
- addition
- scalar product
- More products
- dot product
- cross product
- Bases and orthogonality

Generating eye rays

- Use window analogy directly

Ray: a half line

- Standard representation: point \mathbf{p} and direction \mathbf{d}
$\mathbf{r}(t)=\mathbf{p}+t \mathbf{d}$
- this is a parametric equation for the line
- lets us directly generate the points on the line
- if we restrict to $t>0$ then we have a ray
- note replacing \mathbf{d} with $a \mathbf{d}$ doesn't change ray ($a>0$)

Ray-sphere intersection: algebraic

- Condition I: point is on ray

$$
\mathbf{r}(t)=\mathbf{p}+t \mathbf{d}
$$

- Condition 2: point is on sphere
- assume unit sphere; see Shirley or notes for general

$$
\begin{array}{r}
\|\mathbf{x}\|=1 \Leftrightarrow\|\mathbf{x}\|^{2}=1 \\
f(\mathbf{x})=\mathbf{x} \cdot \mathbf{x}-1=0
\end{array}
$$

- Substitute:

$$
(\mathbf{p}+t \mathbf{d}) \cdot(\mathbf{p}+t \mathbf{d})-1=0
$$

- this is a quadratic equation in t

Ray-sphere intersection: geometric

[^0]
Ray-sphere intersection: algebraic

- Solution for t by quadratic formula:

$$
\begin{aligned}
& t=\frac{-\mathbf{d} \cdot \mathbf{p} \pm \sqrt{(\mathbf{d} \cdot \mathbf{p})^{2}-(\mathbf{d} \cdot \mathbf{d})(\mathbf{p} \cdot \mathbf{p}-1)}}{\mathbf{d} \cdot \mathbf{d}} \\
& t=-\mathbf{d} \cdot \mathbf{p} \pm \sqrt{(\mathbf{d} \cdot \mathbf{p})^{2}-\mathbf{p} \cdot \mathbf{p}+1}
\end{aligned}
$$

- simpler form holds when \mathbf{d} is a unit vector
but we won't assume this in practice (reason later)
- I'll use the unit-vector form to make the geometric interpretation

Ray-box intersection

- Could intersect with 6 faces individually
- Better way: box is the intersection of 3 slabs

Ray-slab intersection

- 2D example
- 3D is the same!

$$
\begin{aligned}
& p_{x}+t_{x \min } d_{x}=x_{\min } \\
& t_{x \min }=\left(x_{\min }-p_{x}\right) / d_{x} \\
& p_{y}+t_{y \min } d_{y}=y_{\min } \\
& t_{y \min }=\left(y_{\min }-p_{y}\right) / d_{y}
\end{aligned}
$$

Intersecting intersections

- Each intersection is an interva
- Want last
entry point and first exit point

$t_{\min }=\max \left(t_{x \min }, t_{y \min }\right)$
$t_{\max }=\min \left(t_{x \max }, t_{y \max }\right)$

$t \in\left[t_{\text {min }}, t_{y \max }\right]$

$t \in\left[t_{x \min }, t_{x \max }\right] \cap\left[t_{y \text { min }}, t_{\text {max }}\right]$
Shirley fig. 10.16

Intersection against many shapes

- The basic idea is:

```
hit (ray, tMin, tMax) {
            tBest = +inf; hitSurface = null;
            for surface in surfaceList {
            t = surface.intersect(ray, tMin, tMax);
            if t < tBest {
            tBest = t;
            hitSurface = surface;
            }
        }
        return hitSurface, t;
    }
- this is linear in the number of shapes but there are sublinear methods (acceleration structures)
```


Image so far

- With eye ray generation and scene intersection

```
for 0 <= iy < ny
    for 0<= ix < nx
        ray = camera.getRay(ix, iy);
        c = scene.trace(ray, 0, +inf);
        image.set(ix, iy, c);
    }
...
trace(ray, tMin, tMax) {
    surface, t = hit(ray, tMin, tMax);
    if (surface != null) return surface.color();
    else return black;
}
```

Cornell CS465 Fall 2006 • Lecture 3
© 2006 Steve Marschner • 21

Image so far

trace(Ray ray, tMin, tMax) \{ surface, $\mathrm{t}=$ hit(ray, tMin, tMax); if (surface ! = null) \{
point = ray.evaluate(t); normal = surface.getNormal(point); return surface.shade(ray, point, normal, light);
\}
else return black;
\}
shade(ray, point, normal, light) \{
v_E = -normalize(ray.direction);
${ }^{-}$_L $=$normalize(light.pos - point);
// compute shading
\}

Shading

- Compute light reflected toward camera
- Inputs:
- eye direction
- light direction (for each of many lights)
- surface normal
- surface parameters (color, shininess, ...)
- More on this in the next lecture

© 2006 Steve Marschner • 22

Shadows

- Surface is only illuminated if nothing blocks its view of the light.
- With ray tracing it's easy to check
- just intersect a ray with the scene!

Image so far

shade(ray, point, normal, light) \{ shadRay = (point, light.pos - point); if (shadRay not blocked) \{
v_E = -normalize(ray.direction); v_L = normalize(light.pos - point);
// compute shading
\}
return black;
\}

Cornell CS465 Fall 2006 • Lecture 3
© 2006 Steve Marschner • 25

- Solution: shadow rays start a tiny distance from the surface

- Do this by moving the start point, or by limiting the t range

Shadow rounding errors

- Don't fall victim to one of the classic blunders:

- What's going on?
- hint: at what t does the shadow ray intersect the surface you're shading?

Multiple lights

- Important to fill in black shadows
- Just loop over lights, add contributions
- Ambient shading
- black shadows are not really right
- one solution: dim light at camera
- alternative: all surface receive a bit more light
- just add a constant "ambient" color to the shading...

Image so far

shade(ray, point, normal, lights) \{
result = ambient;
for light in lights \{
if (shadow ray not blocked) \{ result += shading contribution;

\}

\}
return result;
\}

Architectural practicalities

- Return values
- surface intersection tends to want to return multiple values
- t, surface or shader, normal vector, maybe surface point
- in many programming languages (e.g. Java) this is a pain
- typical solution: an intersection record
- a class with fields for all these things
- keep track of the intersection record for the closest intersection
- be careful of accidental aliasing (which is very easy if you're new to Java)
- Efficiency
- in Java the (or, a) key to being fast is to minimize creation of objects
- what objects are created for every ray? try to find a place for them where you can reuse them.
- Shadow rays can be cheaper (any intersection will do, don't need closest)
- but: "Get it Right, Then Make it Fast"

[^0]: Cornell CS465 Fall 2006 • Lecture 3

