
© 2006 Steve Marschner • 1Cornell CS465 Fall 2006 •!Lecture 3

Ray Tracing

CS 465 Lecture 3

© 2006 Steve Marschner • 2Cornell CS465 Fall 2006 •!Lecture 3

Ray tracing idea

© 2006 Steve Marschner • 3Cornell CS465 Fall 2006 •!Lecture 3

Ray tracing algorithm

for each pixel {

 compute viewing ray

 intersect ray with scene

 compute illumination at visible point

 put result into image

 }

© 2006 Steve Marschner • 4Cornell CS465 Fall 2006 •!Lecture 3

Plane projection in drawing

[C
S
 4

1
7
 S

p
ri

n
g

2
0
0
2
]

© 2006 Steve Marschner • 5Cornell CS465 Fall 2006 •!Lecture 3

Plane projection in photography

• This is another model for what we are doing
– applies more directly in realistic rendering

[C
S
 4

1
7
 S

p
ri

n
g

2
0
0
2
]

© 2006 Steve Marschner • 6Cornell CS465 Fall 2006 •!Lecture 3

Generating eye rays

• Use window analogy directly

© 2006 Steve Marschner • 7Cornell CS465 Fall 2006 •!Lecture 3

Vector math review

• Vectors and points

• Vector operations
– addition

– scalar product

• More products
– dot product

– cross product

• Bases and orthogonality

© 2006 Steve Marschner • 8Cornell CS465 Fall 2006 •!Lecture 3

Ray: a half line

• Standard representation: point p and direction d

– this is a parametric equation for the line

– lets us directly generate the points on the line

– if we restrict to t > 0 then we have a ray

– note replacing d with ad doesn’t change ray (a > 0)

© 2006 Steve Marschner • 9Cornell CS465 Fall 2006 •!Lecture 3

Ray-sphere intersection: algebraic

• Condition 1: point is on ray

• Condition 2: point is on sphere
– assume unit sphere; see Shirley or notes for general

• Substitute:

– this is a quadratic equation in t

© 2006 Steve Marschner • 10Cornell CS465 Fall 2006 •!Lecture 3

Ray-sphere intersection: algebraic

• Solution for t by quadratic formula:

– simpler form holds when d is a unit vector
but we won’t assume this in practice (reason later)

– I’ll use the unit-vector form to make the geometric interpretation

© 2006 Steve Marschner • 11Cornell CS465 Fall 2006 •!Lecture 3

Ray-sphere intersection: geometric

© 2006 Steve Marschner • 12Cornell CS465 Fall 2006 •!Lecture 3

Ray-box intersection

• Could intersect with 6 faces individually

• Better way: box is the intersection of 3 slabs

© 2006 Steve Marschner • 13Cornell CS465 Fall 2006 •!Lecture 3

Ray-slab intersection

• 2D example

• 3D is the same!

© 2006 Steve Marschner • 14Cornell CS465 Fall 2006 •!Lecture 3

Intersecting intersections

• Each intersection
is an interval

• Want last
entry point and
first exit point

Shirley fig. 10.16

© 2006 Steve Marschner • 19Cornell CS465 Fall 2006 •!Lecture 3

Image so far

• With eye ray generation and sphere intersection

Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);

for 0 <= iy < ny

 for 0 <= ix < nx {

 ray = camera.getRay(ix, iy);

 if (s.intersect(ray, 0, +inf) < +inf)

 image.set(ix, iy, white);

 }

© 2006 Steve Marschner • 20Cornell CS465 Fall 2006 •!Lecture 3

Intersection against many shapes

• The basic idea is:

– this is linear in the number of shapes
but there are sublinear methods (acceleration structures)

hit (ray, tMin, tMax) {

 tBest = +inf; hitSurface = null;

 for surface in surfaceList {

 t = surface.intersect(ray, tMin, tMax);

 if t < tBest {

 tBest = t;

 hitSurface = surface;

 }

 }

return hitSurface, t;

}

© 2006 Steve Marschner • 21Cornell CS465 Fall 2006 •!Lecture 3

Image so far

• With eye ray generation and scene intersection

for 0 <= iy < ny

 for 0 <= ix < nx {

 ray = camera.getRay(ix, iy);

 c = scene.trace(ray, 0, +inf);

 image.set(ix, iy, c);

 }

…

trace(ray, tMin, tMax) {

 surface, t = hit(ray, tMin, tMax);

 if (surface != null) return surface.color();

 else return black;

}

© 2006 Steve Marschner • 22Cornell CS465 Fall 2006 •!Lecture 3

Shading

• Compute light reflected toward camera

• Inputs:
– eye direction

– light direction
(for each of many lights)

– surface normal

– surface parameters
(color, shininess, …)

• More on this in the
next lecture

© 2006 Steve Marschner • 23Cornell CS465 Fall 2006 •!Lecture 3

Image so far

trace(Ray ray, tMin, tMax) {

 surface, t = hit(ray, tMin, tMax);

 if (surface != null) {

 point = ray.evaluate(t);

 normal = surface.getNormal(point);

 return surface.shade(ray, point,

 normal, light);

 }

 else return black;

}

…

shade(ray, point, normal, light) {

 v_E = –normalize(ray.direction);

 v_L = normalize(light.pos - point);

 // compute shading

}

© 2006 Steve Marschner • 24Cornell CS465 Fall 2006 •!Lecture 3

Shadows

• Surface is only illuminated if nothing blocks its view of the light.

• With ray tracing it’s easy to check
– just intersect a ray with the scene!

© 2006 Steve Marschner • 25Cornell CS465 Fall 2006 •!Lecture 3

Image so far

shade(ray, point, normal, light) {

 shadRay = (point, light.pos - point);

 if (shadRay not blocked) {

 v_E = –normalize(ray.direction);

 v_L = normalize(light.pos - point);

 // compute shading

 }

 return black;

}

© 2006 Steve Marschner • 26Cornell CS465 Fall 2006 •!Lecture 3

Shadow rounding errors

• Don’t fall victim to one of the classic blunders:

• What’s going on?
– hint: at what t does the shadow ray intersect the surface you’re shading?

© 2006 Steve Marschner • 27Cornell CS465 Fall 2006 •!Lecture 3

• Solution: shadow rays start a tiny distance from the surface

• Do this by moving the start point, or by limiting the t range

© 2006 Steve Marschner • 28Cornell CS465 Fall 2006 •!Lecture 3

Multiple lights

• Important to fill in black shadows

• Just loop over lights, add contributions

• Ambient shading
– black shadows are not really right

– one solution: dim light at camera

– alternative: all surface receive a bit more light
• just add a constant “ambient” color to the shading…

© 2006 Steve Marschner • 29Cornell CS465 Fall 2006 •!Lecture 3

Image so far

shade(ray, point, normal, lights) {

 result = ambient;

 for light in lights {

 if (shadow ray not blocked) {

 result += shading contribution;

 }

 }

 return result;

}

© 2006 Steve Marschner • 30Cornell CS465 Fall 2006 •!Lecture 3

Ray tracer architecture 101

• You want a class called Ray
– point and direction; evaluate(t)

– possible: tMin, tMax

• Some things can be intersected with rays
– individual surfaces

– the whole scene

– often need to be able to limit the range (e.g. shadow rays)

• Once you have the visible intersection, compute the color
– this is an object that’s associated with the object you hit

– its job is to compute the color

© 2006 Steve Marschner • 31Cornell CS465 Fall 2006 •!Lecture 3

Architectural practicalities

• Return values
– surface intersection tends to want to return multiple values

• t, surface or shader, normal vector, maybe surface point

– in many programming languages (e.g. Java) this is a pain

– typical solution: an intersection record
• a class with fields for all these things

• keep track of the intersection record for the closest intersection

• be careful of accidental aliasing (which is very easy if you’re new to Java)

• Efficiency
– in Java the (or, a) key to being fast is to minimize creation of objects

– what objects are created for every ray? try to find a place for them
where you can reuse them.

– Shadow rays can be cheaper (any intersection will do, don’t need closest)

– but: “Get it Right, Then Make it Fast”

