CS 465 Homework 9

out: Friday 10 November 2006

due: Friday 17 November 2006

For the following problems consider the above picture: we have two triangles A and B, with screen space coordinates $A_{1}=(1,1), A_{2}=(-1,-1), A_{3}=(1,-1)$ and $B_{1}=(-1,-1)$, $B_{2}=(1,1), B_{3}=(-1,1)$. Our image size is 2×2 pixels, following the normal conventions of $(0,0)$ being the bottom leftmost pixel and integral centers for pixels. The triangle A has color $(210,50,30)$, the triangle B has color $(10,60,190)$, and the background of the image is $(255,255,255)$. We assume in all questions below that we are performing alpha-compositing on the resultant scene using the over operator and box filtering.

1. What is the color of pixel $(1,0)$ using compositing? What is its true value (i.e. the value you would get using ideal antialiasing directly on the complete scene)?
2. What is the color of pixel $(1,1)$ using compositing (compositing A first and then B)? What is its true value (using the same definition as above)?
3. Suppose we make n copies of triangle A and composite the resultant image. What is the color of pixel $(1,0)$ as $n \rightarrow \infty$?
4. Suppose we make n copies of triangle A and n copies of triangle B and composite the image by first compositing all the copies of A and then all the copies of B. What is the color of pixel $(1,1)$ as $n \rightarrow \infty$?
5. Again, suppose we make n copies of triangles A and B, except this time we alternate between compositing an A copy and a B copy. What happens to the color of pixel $(1,1)$ as $n \rightarrow \infty$? Be as specific as possible.
