
CS 465 Homework 8 Solutions

Part A

1. The fragment program has several input arguments. Which of these need to be inter-
polated by the rasterizer and which are constants?

Answer: n, vE , andkd are interpolated because we have a local viewer and spatially
varying diffuse color. All other values (ks, p, I, andvL) are constant.

Part B

1. Describe how to implement this using a texture mapT of size256× 256

Answer: There are many possible variations, which will affect the answers to some
of the problems below. Here we give the most common answer: letT (i, j) =
round((216 − 1)(i/255)j). In this case the dot productvH · n varies from0 to 1
along the rows ofT and the exponentp varies from0 to 255 along the columns.

2. Give pseudocode for the fragment program in a form similar to above.

Answer:

For our answer above, this becomes

shade-fragment(n, kd, ks, p, I, vL, vE)
vH = normalize(vL + vE)
rd = kd max(0,vL · n)
i = 255max(0, vH · n)
rs = ksfetch-texture(T, i, p)/(216 − 1)
returnI(rd + rs)

3. Which parameters are varying and which are constant?

Answer: n, vE , kd, ks, p are varying.I andvL are constant.

1

CS 465 Homework 8 2

4. What is the value ofT (140, 110)?

Answer:

Again, for our choice ofT ,

T (140, 110) = round((216 − 1)(140/255)110)

= round(1.483e−24)
= 0

5. What value will your fragment program return forn = 1√
41

[1; 6; 2], vE = 1
5 [0; 3; 4],

vL = 1√
17

[1; 0; 4], p = 3.6, ks = 0.8, kd = 0.2, I = 1

Answer:

Sincerd does not depend on the texture map implementation, it will always be the
same:kdvl · n = (0.2)(0.3409) = 0.06818.

For the specular component, we first compute the indices into our texture map:

vH = normalize(vL + vE)
= (0.1287; 0.3183; 0.9392)

i = 255vH · n
= 155.9984

j = 3.6

fetch-texture will bilinearly interpolate from the nearest integer indices, namelyi1 =
155, i2 = 156, andj1 = 3, j2 = 4 with weightswi = 0.9984 andwj = 0.6. This
gives us:

fetch-texture(T, i, j) = (1− wi)(1− wj)T (i1, j1) + wi(1− wj)T (i2, j1)
+ wj(1− wi)T (i1, j2) + wiwjT (i2, j2)

= (0.0016)(0.4)(14718) + (0.9984)(0.4)(15005)
+ (0.0016)(0.6)(8946) + (0.9984)(0.6)(9179)

= 11508.99

which gives us

rs = ksfetch-texture(T, i, j)/(216 − 1)
= (0.8)(11508.9/65535)
= 0.14049

CS 465 Homework 8 3

so our computed shading value isI(rs + rd) = 0.20867.

6. What is the relative error of your answer from part (5) compared to the true value?

Answer:

Plugging in the values given into the original shade-fragment program (without the
texture speedup) gives us a return value of0.20457. Taking our answer from (5), we
get the relative error to be0.20867−0.20457

0.20457 = 0.02004, or about 2%.

Part C

Now we wish to implement a more advanced reflection model, the Ward model. In this
model the reflected color is defined by the equation:

rs = ks

√
cos θE

cos θL

e−(tan α
m)2

m2

whereθE is the angle betweenvE andn, θL is the angle betweenvL andn, α is the angle
betweenvH andn, andm ∈ [0, 1] is the parameter that controls the size of the highlight.

1. Describe how this model can be implemented by a similar approach using texture
maps. Use the simplest texture maps possible (that is, use 1D maps in preference to
2D maps and fewer maps in preference to more maps) while avoiding the computation
of exponentials, square roots, and inverse trigonometric functions in the shader.

Answer:

We first make the observation thatvE · n = |vE ||n| cos θE (and similarly forθL

andα). Since our eye and normal vectors are already normalized, we can use the
dot product to directly calculate the cosine of the angles. Moreover, since we will
never see eye and light rays below the plane perpendicular to the normal vector, these
cosines will always be in the range[0, 1].

To begin with, we notice that
√

cos(θE)
cos(θl)

can be changed to
√

vE ·n√
vL·n . Since our dot

products share the same domain, we can use a single256× 1 1D texture map to store
the square root computation like so:

T1(i, 0) = round((216 − 1) ∗ sqrt(i/255))

which stores the square roots of sample points between0 and1. Note that if we want
to do this with a 2D map we need to be careful about clamping:cos θE

cos θL
can go to

infinity asθL approachesπ/2, so we need to be extremely careful about clamping at
large values so that eachT (i, 0) does not exceed216 − 1.

CS 465 Homework 8 4

As for the second term, we observe that:

(tan(α)/m)2 = sin2(α)/(m2 cos2(α))

= (1− cos2(α))/(m2 cos2(α))

x = (1− (vH · n)2)/(m(vH · n))2

The problem is that x can be between[0,∞), so there is no way to map this to the
finite domain of a texture map. One way around this is to create a 2D texture map,
where the indices arecos α andm, like so:

T2(i, j) = round((216 − 1) ∗ exp(−((1− (i/255)2)/(j/255 ∗ i/255)2))

Another way is to carefully clamp your inputs to never exceed a prescribed bound.
Here we present a third way that does not require any clamping of values.

Takex from above. It can take on any value in[0,∞). We would like to map it to a
finite domain which we can then use as a texture map. Takey = 1/(1 + x). Now,
y ∈ (0, 1], so we can now create a 1D texture map

T2(i, 0) = round((216 − 1) ∗ e−(255−i)/i

noting thatx = (1 − y)/y. Thus, we can use only two 1D maps and eliminate all
expensive mathematical operations without any arbitrary clamping required.

2. Give pseudocode for the fragment program in a form similar to above.

Answer:

We give the pseudocode for the more common case of a 1D map and a 2D map.
Converting it to use the two 1D maps as described above is straightforward.

shade-fragment(n, kd, ks, p, I, vL, vE)
vH = normalize(vL + vE)
rd = kd max(0,vL · n)
veInd= 255max(0,vE · n)
vlInd = 255max(0,vL · n)
cosTrm= fetch-texture(T1, veInd, 0)/fetch-texture(T1, vlInd, 0)
alphaInd= 255max(0,vH · n)
eTrm= fetch-texture(T2, alphaInd, 255 ∗m)/(216 − 1)
rs = ks ∗ cosTrm∗ eTrm/(m ∗m)
returnI(rd + rs)

CS 465 Homework 8 5

3. Which parameters are varying and which are constant?

Answer:

It is intended thatks andm can vary over the surface just as in part B, but since that
was unspecified any answer form andks that was consistent with answers from (1)
and (2) was accepted. Ideally,n, vE , kd, ks, p are varying.I andvL are constant.

