CS 465 Homework 6

out: Friday 13 October 2006
 due: Friday 20 October 2006

Problem 1: 3D parametric surfaces
Consider the Bézier Curve defined by the following control points:

$$
\begin{aligned}
& \mathbf{p}_{0}=(0,0,0) \\
& \mathbf{p}_{1}=(1,0,0) \\
& \mathbf{p}_{2}=(1,1,0) \\
& \mathbf{p}_{3}=(0,2,0)
\end{aligned}
$$

A 3D surface of revolution can be formed by revolving this curve 360° about the y axis. This surface can be expressed as

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\mathbf{f}(u, v)
$$

where $v \in[0,1]$ parametrizes the position along the spline segment (just as t does), and $u \in[0,1]$ parametrizes the counter-clockwise rotation around the positive y axis. With the conventions discussed in class, this parametrization defines the inside and outside of the surface in a way that is consistent with our intuition for closed surfaces.

1. Give equations for the three components of $\mathbf{f}(u, v)$.
2. Give the surface normal vector at $(u, v)=(0.5,0.5)$, using the partial derivatives $\partial \mathbf{f} / \partial u$ and $\partial \mathbf{f} / \partial v$.
3. Is the normal to the surface well-defined when $(u, v)=(0,0)$? Can it be computed using $\partial \mathbf{f} / \partial u$ and $\partial \mathbf{f} / \partial v$?
4. Is the normal to the surface well-defined when $(u, v)=(1,1)$? Can it be computed using $\partial \mathbf{f} / \partial u$ and $\partial \mathbf{f} / \partial v$?

Problem 2: Mesh Data Structures
A trigonal dipyramidal mesh is illustrated below. It consists of five vertices (labeled 0-4), six triangular faces (labeled $A-F$), and nine edges (labeled $a-i$).

Assuming the vertex positions are already stored in a table by vertex number, give representations of this mesh in the following forms:

1. An indexed triangle mesh.
2. A set of triangle strips (use as few strips as possible).
3. A winged-edge structure (use a form similar to Figure 13.2 in Shirley).
