CS 465 Homework 5

out: Friday 6 October 2006
 due: Friday 13 October 2006

Problem 1: 3D Transformations
Any rotation in 3D can be expressed as a rotation around an axis that passes through the origin. This axis-angle form can be specified by a unit vector $\hat{\mathbf{v}}$ around which a counterclockwise rotation by θ is performed.
Let $\hat{\mathbf{v}}=\left[\begin{array}{lll}4 & 2 & 1\end{array}\right]^{T} / \sqrt{21}$ and $\theta=45^{\circ}$.
Your goal is to derive the transformation matrix that corresponds to the axis-angle rotation defined by $\hat{\mathbf{v}}$ and θ.

1. Express the axis-angle rotation matrix as the product of 5 coordinate-axis rotations. Hint: The first two rotations should align $\hat{\mathbf{v}}$ with a coordinate axis.
2. Construct a rotation matrix that maps the vector $\mathbf{e}_{3}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{T}$ to the vector $\hat{\mathbf{v}}$ by constructing its columns as an orthonormal basis. Use this matrix to derive the matrix for the axis-angle rotation specified by the $\hat{\mathbf{v}}$ and θ above.

You might want to check your answer using a computer by ensuring that it is orthonormal and does not move the vector $\hat{\mathbf{v}}$.

Problem 2: Cubic Curves

Consider the following set of 4 control points

$$
\begin{aligned}
& \mathbf{p}_{0}=(-1,0) \\
& \mathbf{p}_{1}=(1,0) \\
& \mathbf{p}_{2}=(0,1) \\
& \mathbf{p}_{3}=(0,-1)
\end{aligned}
$$

You will use these control points to construct two different cubic curves:

1. B-Spline
2. Bézier Curve

For each type of curve, please do the following:
(a) Give the polynomials $x(t)$ and $y(t)$ that define the curve on the interval $t \in[0,1]$. For the B-spline, we are talking about the one segment that is controlled by these four control points; you don't need to worry about what happens outside that segment.
(b) Give the (x, y) positions of the endpoints of the curve.
(c) Give all values of $(t, x(t))$ where $\delta x / \delta t=0$, on the interval $t \in[0,1]$. Do the same for $y(t)$.
(d) Carefully sketch each polynomial, including all of the positions and local extrema found above, on the interval $t \in[0,1]$. Labels will be helpful.
(e) Sketch the resulting curve $f(t)=[x(t) y(t)]^{T}$. Again, be sure to be consistent with the polynomials in (a) and accurately include all of the features found in (b) and (c).

