CS 465 Homework 10

out: Monday 20 November 2006 due: Friday 1 December 2006

Note: You are encouraged to use mathematical tools like MATLAB, Excel, graphing caluclators, or small programs in Java to come up with the answers for this homework.

Consider a CRT monitor M_1 with the following primary color spectra:

(The data for this plot are available in m-rgb.txt.) The maximum luminance of this monitor is 100; that is, the Y tristimulus value when the monitor is displaying pure white is 100. We consider this monitor to be an ideal monitor; that is, the gamma value is 1 and it accepts floating point numbers of arbitrary precision so that there are no quantization artifacts.

Part A

- 1. What is the RGB-to-XYZ transformation matrix for M_1 ?
- 2. What are the chromaticities of the primaries?
- 3. The white point of a monitor is the chromaticity of the displayed color when the monitor is outputting all white $(R_{M_1} = G_{M_1} = B_{M_1} = 1.0)$. What is the white point of monitor M_1 ?

Part B

Now consider a second LCD monitor M_2 , again with maximum luminance of 100. Rather than measure the spectra, we have obtained from the manufacturer the chromaticities of the primaries as well as the white point, which are:

Red primary	x = 0.640	y = 0.330
Green primary	x = 0.300	y = 0.600
Blue primary	x = 0.150	y = 0.060
White point	x = 0.313	y = 0.329

(These are the values for the Dell 2407WFP display, as reported by the display's firmware.) Again, treat this as an ideal monitor with a gamma of 1 and no quantization performed.

- 1. What is the RGB-to-XYZ transformation matrix for M_2 ? *Hint:* With just the chromaticities given, there is an unknown scale factor for each of the primaries. The white point determines these factors, which you can recover using some linear equations.
- 2. Consider the spectrum below, which is a medium skin tone under daylight illumination.

(The data for this plot are available in skin-d65.txt.) The plot gives the relative spectral distribution, and the luminance of the color is 50. What RGB values are needed to produce a metamer (in the XYZ color space) of this spectrum for monitor M_1 ? For monitor M_2 ?

3. Because these are all linear transformations, we can compute an RGB transformation matrix through matrix products that, given an RGB triplet $(R_{M_1}, G_{M_1}, B_{M_1})$ to be displayed on monitor M_1 , will produce the RGB triplet $(R_{M_2}, G_{M_2}, B_{M_2})$ that should be displayed on monitor M_2 in order to produce the same color response. Compute this matrix for transforming from M_1 to M_2 , and show that it works as expected by plugging in your answers to (2).