## CS 417 Final Exam

Friday, May 9, 2003

**Problem 1** (15 pts): Which of the following scenes would cause problems for the Painter's Algorithm?



(These drawings are in image space; each rectangle is a single primitive.)

**Problem 2** (15 pts): Suppose we begin with the square (in 2D) that has vertices at  $(\pm 1, \pm 1)$  and subdivide using the B-spline subdivision masks, which are  $1-6-1^1$  for even points and 1-1 for odd points. What are the coordinates of the vertices of the resulting polygon? Note that this question is about curve subdivision, not surface subdivision.

**Problem 3** (15 pts): Match the following texture coordinate functions with the shapes being projected onto.

- 1. u = atan2(x, z); v = y
- 2. u = x; v = y
- 3.  $u = \operatorname{atan2}(x, z); v = \operatorname{atan2}(y, \sqrt{x^2 + z^2})$
- (i) Plane
- (ii) Cylinder in longitude/height parameterization
- (iii) Sphere in longitude/latitude parameterization

<sup>&</sup>lt;sup>1</sup>That is,  $\frac{1}{8} - \frac{3}{4} - \frac{1}{8}$ .

CS 417 Final Exam 2

## **Problem 4** (20 pts):

Consider the following ray/surface intersection function.

```
function IntersectX(Point p, Vector d)
t = (1 - (p.x + p.y + p.z)) / (d.x + d.y + d.z)
if (t > 0) return t;
else return PLUS INFINITY;
```

1. With what surface does this function return the intersection?

The following function returns the intersection of a ray with a cube:

```
function IntersectCube(Point p, Vector d)
  tx1 = (1 - p.x) / d.x;
  tx2 = (-1 - p.x) / d.x;
  ty1 = (1 - p.y) / d.y;
  ty2 = (-1 - p.y) / d.y;
  tz1 = (1 - p.z) / d.z;
  tz2 = (-1 - p.z) / d.z;
  t1 = max(min(tx1, tx2), min(ty1, ty2), min(tz1, tz2));
  t2 = min(max(tx1, tx2), max(ty1, ty2), max(tz1, tz2));
  if (t1 > 0) return t1;
  else if (t2 > 0) return t2;
  else return PLUS_INFINITY;
```

2. Adapt this pseudocode to intersect a ray with an octahedron using a similar approach.

CS 417 Final Exam 3

## **Problem 5** (15 pts):

Consider the spectral power distributions plotted on this graph:



1. What colors are these spectra? I'm looking for plain old color names; for instance, the unlabeled gray curve is red.

- 2. Define metamer.
- 3. What role do metamers play in the reproduction of color?

## **Problem 6** (20 pts):

Assume you are given the following functions:

- a spectral power distribution  $s(\lambda)$  that we wish to match,
- three primary lights  $p_r(\lambda)$ ,  $p_g(\lambda)$ , and  $p_b(\lambda)$  that we can combine additively using scale factors R, G, and B, and
- the response functions  $r_s(\lambda)$ ,  $r_m(\lambda)$ , and  $r_l(\lambda)$  of the cones in the human eye.
- 1. Is it always possible to match the color of s by mixing the three primary lights? Why or why not?
- 2. What values of R, G, and B will produce a color match with s? Your answer should be in terms of the functions given above, and you should use matrix and calculus operations as needed.
- 3. How would the answer change if you were given the standard color matching functions  $\bar{x}(\lambda)$ ,  $\bar{y}(\lambda)$ , and  $\bar{z}(\lambda)$  instead of the cone response functions?

The spectra are absolute, rather than relative: for example,  $r(\lambda)$  is the spectrum that will result from setting R=1 and G=B=0.