
4620/5620 Fall 2015

Notes: Depth interpolation, perspective correct texturing

Kavita Bala

This is a short note explaining the math behind depth interpolations, and perspective correct
texturing.

1 Depth interpolation and perspective-correct texturing

We want to derive the correct equations for z computation. We will stay in 2D, but 3D is an easy
generalization.

Consider a 2D line with end points (X0, Z0) and (X1, Z1). These 2 points project (under a
perspective transformation) to screen space points S0 and S1 respectively. We want to find the
depth values Z ′, and texture coordinates U that are correct even with the perspective transform.

Now consider a point (X,Z) that lies on the line between (X0, Z0) and (X1, Z2): it’s screen
space projection on the image plane is S, and its texture coordinate is U . Let the screen space
interpolation parameter by q, and t be the world space interpolation parameter. Our goal is to
find the way we need to interpolate in screen space to produce the correct depth value and the
perspective-correct U value.

Let d be the distance of the image plane from the eye. Using similar triangles for the points,
we have:

X0

Z0
=

S0

−d
(1)

X1

Z1
=

S1

−d
(2)

1

Given an arbitrary point (X,Z), we have the equation for its projection S to be:

X

Z
=

S

−d
(3)

Z =
−dX

S
(4)

The point S is computed by screen space interpolation of S0 and S1.

S = S0 + q(S1 − S0) (5)

X and Z are obtained by world space interpolation of X0 and X1, and Z0 and Z1, respectively.

[X,Z] = [X0 + t(X1 −X0), Z0 + t(Z1 − Z0)] (6)

Combining Equation 4 with Equation 5 and Equation 6 we get:

Z =
−dX

S
(7)

=
−d(X0 + t(X1 −X0))

S0 + q(S1 − S0)
(8)

Z =
−d(S0Z0

−d + t (S1Z1−S0Z0)
−d

S0 + q(S1 − S0)
(9)

=
S0Z0 + t(S1Z1 − S0Z0)

S0 + q(S1 − S0)
(10)

But Z is Z0 + t(Z1 − Z0) from Equation 4. Thus,

Z0 + t(Z1 − Z0) =
S0Z0 + t(S1Z1 − S0Z0)

S0 + q(S1 − S0)
(11)

which can be simplified to

Z0S0 + Z0q(S1 − S0) + t(Z1 − Z0)S0 + tq(Z1 − Z0)(S1 − S0) = S0Z0 + t(S1Z1 − S0Z0)

t[S0Z1 − S0Z0 + q(Z1 − Z0)(S1 − S0) − S1Z1 + S0Z0] = −Z0q(S1 − S0)

t(S1 − S0)[Z1 − q(Z1 − Z0)] = Z0q(S1 − S0)

t[qZ0 + (1 − q)Z1] = Z0q

giving us the value of t in terms of q:

t =
Z0q

qZ0 + (1 − q)Z1
(12)

2

Substituting t in Equation 6 we get:

Z = Z0 + t(Z1 − Z0) = Z0 +
Z0q(Z1 − Z0)

qZ0 + (1 − q)Z1
(13)

=
qZ2

0 + (1 − q)Z0Z1 + qZ0Z1 − qZ2
0

qZ0 + (1 − q)Z1
(14)

=
Z0Z1

qZ0 + (1 − q)Z1
(15)

=
1

1
Z0

+ q(1
Z1

− 1
Z0

)
(16)

1

Z
=

1

Z0
+ q(

1

Z1
− 1

Z0
) (17)

(18)

What this equation tells us is that we can interpolate 1
Z in screen space using q to produce a

value that will in fact be the correct value of 1
Z . And therefore, we can use that quantity for depth

comparisons in the Z-buffer to figure out occlusion.

Perspective correct texturing Our goal is to compute the perspective correct U value. Re-
member that in perspective projection, the Z value is moved into the W . So, W = 1/Z, and we
get,

W = W0 + q(W1 −W0) (19)

This equation tells us that we can achieve that using screen-space interpolation, as long as
we linearly interpolate W (which is reciprocal Z) in screen space using q, and then compute Z as
1
W . For computing texture coordinates, the same substitution can be done. Except here we are
interpolating the texture coordinate U . Given

U = U0 + t(U1 − U0) (20)

and substituting t from Equation 12 we get:

U =
U0W0 + q(U1W1 − U0W0)

W0 + q(W1 −W0)
(21)

Thus the texture coordinates U can be correctly dervived by linearly interpolating in screen
space (using q) as follows: interpolate UW and W and then compute U as interpolatedUW

interpolatedW .

3

