4620/5620 Fall 2015
 Notes: Depth interpolation, perspective correct texturing Kavita Bala

This is a short note explaining the math behind depth interpolations, and perspective correct texturing.

1 Depth interpolation and perspective-correct texturing

We want to derive the correct equations for z computation. We will stay in 2 D , but 3 D is an easy generalization.

Consider a 2D line with end points $\left(X_{0}, Z_{0}\right)$ and $\left(X_{1}, Z_{1}\right)$. These 2 points project (under a perspective transformation) to screen space points S_{0} and S_{1} respectively. We want to find the depth values Z^{\prime}, and texture coordinates U that are correct even with the perspective transform.

Now consider a point (X, Z) that lies on the line between $\left(X_{0}, Z_{0}\right)$ and $\left(X_{1}, Z_{2}\right)$: it's screen space projection on the image plane is S, and its texture coordinate is U. Let the screen space interpolation parameter by q, and t be the world space interpolation parameter. Our goal is to find the way we need to interpolate in screen space to produce the correct depth value and the perspective-correct U value.

Let d be the distance of the image plane from the eye. Using similar triangles for the points, we have:

$$
\begin{align*}
& \frac{X_{0}}{Z_{0}}=\frac{S_{0}}{-d} \tag{1}\\
& \frac{X_{1}}{Z_{1}}=\frac{S_{1}}{-d} \tag{2}
\end{align*}
$$

Given an arbitrary point (X, Z), we have the equation for its projection S to be:

$$
\begin{gather*}
\frac{X}{Z}=\frac{S}{-d} \tag{3}\\
Z=\frac{-d X}{S} \tag{4}
\end{gather*}
$$

The point S is computed by screen space interpolation of S_{0} and S_{1}.

$$
\begin{equation*}
S=S_{0}+q\left(S_{1}-S_{0}\right) \tag{5}
\end{equation*}
$$

X and Z are obtained by world space interpolation of X_{0} and X_{1}, and Z_{0} and Z_{1}, respectively.

$$
\begin{equation*}
[X, Z]=\left[X_{0}+t\left(X_{1}-X_{0}\right), Z_{0}+t\left(Z_{1}-Z_{0}\right)\right] \tag{6}
\end{equation*}
$$

Combining Equation 4 with Equation 5 and Equation 6 we get:

$$
\begin{align*}
Z & =\frac{-d X}{S} \tag{7}\\
& =\frac{-d\left(X_{0}+t\left(X_{1}-X_{0}\right)\right)}{S_{0}+q\left(S_{1}-S_{0}\right)} \tag{8}\\
Z & =\frac{-d\left(\frac{S_{0} Z_{0}}{-d}+t \frac{\left(S_{1} Z_{1}-S_{0} Z_{0}\right)}{-d}\right.}{S_{0}+q\left(S_{1}-S_{0}\right)} \tag{9}\\
& =\frac{S_{0} Z_{0}+t\left(S_{1} Z_{1}-S_{0} Z_{0}\right)}{S_{0}+q\left(S_{1}-S_{0}\right)} \tag{10}
\end{align*}
$$

But Z is $Z_{0}+t\left(Z_{1}-Z_{0}\right)$ from Equation 4. Thus,

$$
\begin{equation*}
Z_{0}+t\left(Z_{1}-Z_{0}\right)=\frac{S_{0} Z_{0}+t\left(S_{1} Z_{1}-S_{0} Z_{0}\right)}{S_{0}+q\left(S_{1}-S_{0}\right)} \tag{11}
\end{equation*}
$$

which can be simplified to

$$
\begin{aligned}
Z_{0} S_{0}+Z_{0} q\left(S_{1}-S_{0}\right)+t\left(Z_{1}-Z_{0}\right) S_{0}+t q\left(Z_{1}-Z_{0}\right)\left(S_{1}-S_{0}\right) & =S_{0} Z_{0}+t\left(S_{1} Z_{1}-S_{0} Z_{0}\right) \\
t\left[S_{0} Z_{1}-S_{0} Z_{0}+q\left(Z_{1}-Z_{0}\right)\left(S_{1}-S_{0}\right)-S_{1} Z_{1}+S_{0} Z_{0}\right] & =-Z_{0} q\left(S_{1}-S_{0}\right) \\
t\left(S_{1}-S_{0}\right)\left[Z_{1}-q\left(Z_{1}-Z_{0}\right)\right] & =Z_{0} q\left(S_{1}-S_{0}\right) \\
t\left[q Z_{0}+(1-q) Z_{1}\right]=Z_{0} q &
\end{aligned}
$$

giving us the value of t in terms of q :

$$
\begin{equation*}
t=\frac{Z_{0} q}{q Z_{0}+(1-q) Z_{1}} \tag{12}
\end{equation*}
$$

Substituting t in Equation 6 we get:

$$
\begin{align*}
Z & =Z_{0}+t\left(Z_{1}-Z_{0}\right)=Z_{0}+\frac{Z_{0} q\left(Z_{1}-Z_{0}\right)}{q Z_{0}+(1-q) Z_{1}} \tag{13}\\
& =\frac{q Z_{0}^{2}+(1-q) Z_{0} Z_{1}+q Z_{0} Z_{1}-q Z_{0}^{2}}{q Z_{0}+(1-q) Z_{1}} \tag{14}\\
& =\frac{Z_{0} Z_{1}}{q Z_{0}+(1-q) Z_{1}} \tag{15}\\
= & \frac{1}{\frac{1}{Z_{0}}+q\left(\frac{1}{Z_{1}}-\frac{1}{Z_{0}}\right)} \tag{16}\\
& \frac{1}{Z}=\frac{1}{Z_{0}}+q\left(\frac{1}{Z_{1}}-\frac{1}{Z_{0}}\right) \tag{17}
\end{align*}
$$

What this equation tells us is that we can interpolate $\frac{1}{Z}$ in screen space using q to produce a value that will in fact be the correct value of $\frac{1}{Z}$. And therefore, we can use that quantity for depth comparisons in the Z-buffer to figure out occlusion.

Perspective correct texturing Our goal is to compute the perspective correct U value. Remember that in perspective projection, the Z value is moved into the W. So, $W=1 / Z$, and we get,

$$
\begin{equation*}
W=W_{0}+q\left(W_{1}-W_{0}\right) \tag{19}
\end{equation*}
$$

This equation tells us that we can achieve that using screen-space interpolation, as long as we linearly interpolate W (which is reciprocal Z) in screen space using q , and then compute Z as $\frac{1}{W}$. For computing texture coordinates, the same substitution can be done. Except here we are interpolating the texture coordinate U. Given

$$
\begin{equation*}
U=U_{0}+t\left(U_{1}-U_{0}\right) \tag{20}
\end{equation*}
$$

and substituting t from Equation 12 we get:

$$
\begin{equation*}
U=\frac{U_{0} W_{0}+q\left(U_{1} W_{1}-U_{0} W_{0}\right)}{W_{0}+q\left(W_{1}-W_{0}\right)} \tag{21}
\end{equation*}
$$

Thus the texture coordinates U can be correctly dervived by linearly interpolating in screen space (using q) as follows: interpolate $U W$ and W and then compute U as $\frac{\text { interpolatedU } W}{\text { interpolated } W}$.

